| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwnintr.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwnintr.2 |
|- ( ph -> B e. P ) |
| 7 |
|
tgbtwnintr.3 |
|- ( ph -> C e. P ) |
| 8 |
|
tgbtwnintr.4 |
|- ( ph -> D e. P ) |
| 9 |
|
tgbtwnouttr2.1 |
|- ( ph -> B =/= C ) |
| 10 |
|
tgbtwnouttr2.2 |
|- ( ph -> B e. ( A I C ) ) |
| 11 |
|
tgbtwnouttr2.3 |
|- ( ph -> C e. ( B I D ) ) |
| 12 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> C e. ( A I x ) ) |
| 13 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> G e. TarskiG ) |
| 14 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> C e. P ) |
| 15 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> D e. P ) |
| 16 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> B e. P ) |
| 17 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> x e. P ) |
| 18 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> B =/= C ) |
| 19 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> A e. P ) |
| 20 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> B e. ( A I C ) ) |
| 21 |
1 2 3 13 19 16 14 17 20 12
|
tgbtwnexch3 |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> C e. ( B I x ) ) |
| 22 |
11
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> C e. ( B I D ) ) |
| 23 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> ( C .- x ) = ( C .- D ) ) |
| 24 |
|
eqidd |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> ( C .- D ) = ( C .- D ) ) |
| 25 |
1 2 3 13 14 14 15 16 17 15 18 21 22 23 24
|
tgsegconeq |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> x = D ) |
| 26 |
25
|
oveq2d |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> ( A I x ) = ( A I D ) ) |
| 27 |
12 26
|
eleqtrd |
|- ( ( ( ph /\ x e. P ) /\ ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) -> C e. ( A I D ) ) |
| 28 |
1 2 3 4 5 7 7 8
|
axtgsegcon |
|- ( ph -> E. x e. P ( C e. ( A I x ) /\ ( C .- x ) = ( C .- D ) ) ) |
| 29 |
27 28
|
r19.29a |
|- ( ph -> C e. ( A I D ) ) |