Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwnswapid.1 |
|- ( ph -> A e. P ) |
6 |
|
tgbtwnswapid.2 |
|- ( ph -> B e. P ) |
7 |
|
tgbtwnswapid.3 |
|- ( ph -> C e. P ) |
8 |
|
tgbtwnswapid.4 |
|- ( ph -> A e. ( B I C ) ) |
9 |
|
tgbtwnswapid.5 |
|- ( ph -> B e. ( A I C ) ) |
10 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> G e. TarskiG ) |
11 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A e. P ) |
12 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. P ) |
13 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( A I A ) ) |
14 |
1 2 3 10 11 12 13
|
axtgbtwnid |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = x ) |
15 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B e. P ) |
16 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( B I B ) ) |
17 |
1 2 3 10 15 12 16
|
axtgbtwnid |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B = x ) |
18 |
14 17
|
eqtr4d |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = B ) |
19 |
1 2 3 4 6 5 7 5 6 8 9
|
axtgpasch |
|- ( ph -> E. x e. P ( x e. ( A I A ) /\ x e. ( B I B ) ) ) |
20 |
18 19
|
r19.29a |
|- ( ph -> A = B ) |