Metamath Proof Explorer


Theorem tgbtwnswapid

Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwnswapid.1
|- ( ph -> A e. P )
tgbtwnswapid.2
|- ( ph -> B e. P )
tgbtwnswapid.3
|- ( ph -> C e. P )
tgbtwnswapid.4
|- ( ph -> A e. ( B I C ) )
tgbtwnswapid.5
|- ( ph -> B e. ( A I C ) )
Assertion tgbtwnswapid
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwnswapid.1
 |-  ( ph -> A e. P )
6 tgbtwnswapid.2
 |-  ( ph -> B e. P )
7 tgbtwnswapid.3
 |-  ( ph -> C e. P )
8 tgbtwnswapid.4
 |-  ( ph -> A e. ( B I C ) )
9 tgbtwnswapid.5
 |-  ( ph -> B e. ( A I C ) )
10 4 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> G e. TarskiG )
11 5 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A e. P )
12 simplr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. P )
13 simprl
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( A I A ) )
14 1 2 3 10 11 12 13 axtgbtwnid
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = x )
15 6 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B e. P )
16 simprr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( B I B ) )
17 1 2 3 10 15 12 16 axtgbtwnid
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B = x )
18 14 17 eqtr4d
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = B )
19 1 2 3 4 6 5 7 5 6 8 9 axtgpasch
 |-  ( ph -> E. x e. P ( x e. ( A I A ) /\ x e. ( B I B ) ) )
20 18 19 r19.29a
 |-  ( ph -> A = B )