Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
tkgeom.d | |- .- = ( dist ` G ) |
||
tkgeom.i | |- I = ( Itv ` G ) |
||
tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
tgbtwntriv2.1 | |- ( ph -> A e. P ) |
||
tgbtwntriv2.2 | |- ( ph -> B e. P ) |
||
Assertion | tgbtwntriv1 | |- ( ph -> A e. ( A I B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | |- P = ( Base ` G ) |
|
2 | tkgeom.d | |- .- = ( dist ` G ) |
|
3 | tkgeom.i | |- I = ( Itv ` G ) |
|
4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgbtwntriv2.1 | |- ( ph -> A e. P ) |
|
6 | tgbtwntriv2.2 | |- ( ph -> B e. P ) |
|
7 | 1 2 3 4 6 5 | tgbtwntriv2 | |- ( ph -> A e. ( B I A ) ) |
8 | 1 2 3 4 6 5 5 7 | tgbtwncom | |- ( ph -> A e. ( A I B ) ) |