Metamath Proof Explorer


Theorem tgbtwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwntriv2.1
|- ( ph -> A e. P )
tgbtwntriv2.2
|- ( ph -> B e. P )
Assertion tgbtwntriv1
|- ( ph -> A e. ( A I B ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwntriv2.1
 |-  ( ph -> A e. P )
6 tgbtwntriv2.2
 |-  ( ph -> B e. P )
7 1 2 3 4 6 5 tgbtwntriv2
 |-  ( ph -> A e. ( B I A ) )
8 1 2 3 4 6 5 5 7 tgbtwncom
 |-  ( ph -> A e. ( A I B ) )