Metamath Proof Explorer


Theorem tgbtwntriv2

Description: Betweenness always holds for the second endpoint. Theorem 3.1 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwntriv2.1
|- ( ph -> A e. P )
tgbtwntriv2.2
|- ( ph -> B e. P )
Assertion tgbtwntriv2
|- ( ph -> B e. ( A I B ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwntriv2.1
 |-  ( ph -> A e. P )
6 tgbtwntriv2.2
 |-  ( ph -> B e. P )
7 simprl
 |-  ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B e. ( A I x ) )
8 4 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> G e. TarskiG )
9 6 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> B e. P )
10 simplr
 |-  ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> x e. P )
11 simpr
 |-  ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> ( B .- x ) = ( B .- B ) )
12 1 2 3 8 9 10 9 11 axtgcgrid
 |-  ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> B = x )
13 12 adantrl
 |-  ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B = x )
14 13 oveq2d
 |-  ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> ( A I B ) = ( A I x ) )
15 7 14 eleqtrrd
 |-  ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B e. ( A I B ) )
16 1 2 3 4 5 6 6 6 axtgsegcon
 |-  ( ph -> E. x e. P ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) )
17 15 16 r19.29a
 |-  ( ph -> B e. ( A I B ) )