Step |
Hyp |
Ref |
Expression |
1 |
|
tgcgrxfr.p |
|- P = ( Base ` G ) |
2 |
|
tgcgrxfr.m |
|- .- = ( dist ` G ) |
3 |
|
tgcgrxfr.i |
|- I = ( Itv ` G ) |
4 |
|
tgcgrxfr.r |
|- .~ = ( cgrG ` G ) |
5 |
|
tgcgrxfr.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
tgcgr4.a |
|- ( ph -> A e. P ) |
7 |
|
tgcgr4.b |
|- ( ph -> B e. P ) |
8 |
|
tgcgr4.c |
|- ( ph -> C e. P ) |
9 |
|
tgcgr4.d |
|- ( ph -> D e. P ) |
10 |
|
tgcgr4.w |
|- ( ph -> W e. P ) |
11 |
|
tgcgr4.x |
|- ( ph -> X e. P ) |
12 |
|
tgcgr4.y |
|- ( ph -> Y e. P ) |
13 |
|
tgcgr4.z |
|- ( ph -> Z e. P ) |
14 |
|
fzo0ssnn0 |
|- ( 0 ..^ 4 ) C_ NN0 |
15 |
|
nn0ssre |
|- NN0 C_ RR |
16 |
14 15
|
sstri |
|- ( 0 ..^ 4 ) C_ RR |
17 |
16
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) C_ RR ) |
18 |
6 7 8 9
|
s4cld |
|- ( ph -> <" A B C D "> e. Word P ) |
19 |
|
wrdf |
|- ( <" A B C D "> e. Word P -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> P ) |
20 |
18 19
|
syl |
|- ( ph -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> P ) |
21 |
|
s4len |
|- ( # ` <" A B C D "> ) = 4 |
22 |
21
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C D "> ) ) = ( 0 ..^ 4 ) |
23 |
22
|
feq2i |
|- ( <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> P <-> <" A B C D "> : ( 0 ..^ 4 ) --> P ) |
24 |
20 23
|
sylib |
|- ( ph -> <" A B C D "> : ( 0 ..^ 4 ) --> P ) |
25 |
10 11 12 13
|
s4cld |
|- ( ph -> <" W X Y Z "> e. Word P ) |
26 |
|
wrdf |
|- ( <" W X Y Z "> e. Word P -> <" W X Y Z "> : ( 0 ..^ ( # ` <" W X Y Z "> ) ) --> P ) |
27 |
25 26
|
syl |
|- ( ph -> <" W X Y Z "> : ( 0 ..^ ( # ` <" W X Y Z "> ) ) --> P ) |
28 |
|
s4len |
|- ( # ` <" W X Y Z "> ) = 4 |
29 |
28
|
oveq2i |
|- ( 0 ..^ ( # ` <" W X Y Z "> ) ) = ( 0 ..^ 4 ) |
30 |
29
|
feq2i |
|- ( <" W X Y Z "> : ( 0 ..^ ( # ` <" W X Y Z "> ) ) --> P <-> <" W X Y Z "> : ( 0 ..^ 4 ) --> P ) |
31 |
27 30
|
sylib |
|- ( ph -> <" W X Y Z "> : ( 0 ..^ 4 ) --> P ) |
32 |
1 2 4 5 17 24 31
|
iscgrglt |
|- ( ph -> ( <" A B C D "> .~ <" W X Y Z "> <-> A. i e. dom <" A B C D "> A. j e. dom <" A B C D "> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) ) ) |
33 |
24
|
fdmd |
|- ( ph -> dom <" A B C D "> = ( 0 ..^ 4 ) ) |
34 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
35 |
34
|
oveq2i |
|- ( 0 ..^ ( 3 + 1 ) ) = ( 0 ..^ 4 ) |
36 |
|
3nn0 |
|- 3 e. NN0 |
37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
38 |
36 37
|
eleqtri |
|- 3 e. ( ZZ>= ` 0 ) |
39 |
|
fzosplitsn |
|- ( 3 e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( 3 + 1 ) ) = ( ( 0 ..^ 3 ) u. { 3 } ) ) |
40 |
38 39
|
ax-mp |
|- ( 0 ..^ ( 3 + 1 ) ) = ( ( 0 ..^ 3 ) u. { 3 } ) |
41 |
35 40
|
eqtr3i |
|- ( 0 ..^ 4 ) = ( ( 0 ..^ 3 ) u. { 3 } ) |
42 |
33 41
|
eqtrdi |
|- ( ph -> dom <" A B C D "> = ( ( 0 ..^ 3 ) u. { 3 } ) ) |
43 |
42
|
raleqdv |
|- ( ph -> ( A. j e. dom <" A B C D "> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> A. j e. ( ( 0 ..^ 3 ) u. { 3 } ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) ) ) |
44 |
|
breq2 |
|- ( j = 3 -> ( i < j <-> i < 3 ) ) |
45 |
|
fveq2 |
|- ( j = 3 -> ( <" A B C D "> ` j ) = ( <" A B C D "> ` 3 ) ) |
46 |
45
|
oveq2d |
|- ( j = 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) ) |
47 |
|
fveq2 |
|- ( j = 3 -> ( <" W X Y Z "> ` j ) = ( <" W X Y Z "> ` 3 ) ) |
48 |
47
|
oveq2d |
|- ( j = 3 -> ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) |
49 |
46 48
|
eqeq12d |
|- ( j = 3 -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) <-> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) |
50 |
44 49
|
imbi12d |
|- ( j = 3 -> ( ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
51 |
50
|
ralunsn |
|- ( 3 e. NN0 -> ( A. j e. ( ( 0 ..^ 3 ) u. { 3 } ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
52 |
36 51
|
ax-mp |
|- ( A. j e. ( ( 0 ..^ 3 ) u. { 3 } ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
53 |
43 52
|
bitrdi |
|- ( ph -> ( A. j e. dom <" A B C D "> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
54 |
53
|
ralbidv |
|- ( ph -> ( A. i e. dom <" A B C D "> A. j e. dom <" A B C D "> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> A. i e. dom <" A B C D "> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
55 |
42
|
raleqdv |
|- ( ph -> ( A. i e. dom <" A B C D "> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> A. i e. ( ( 0 ..^ 3 ) u. { 3 } ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
56 |
|
fzo0ssnn0 |
|- ( 0 ..^ 3 ) C_ NN0 |
57 |
56 15
|
sstri |
|- ( 0 ..^ 3 ) C_ RR |
58 |
|
simpr |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> j e. ( 0 ..^ 3 ) ) |
59 |
57 58
|
sselid |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> j e. RR ) |
60 |
|
simpl |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> i = 3 ) |
61 |
|
3re |
|- 3 e. RR |
62 |
60 61
|
eqeltrdi |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> i e. RR ) |
63 |
|
elfzolt2 |
|- ( j e. ( 0 ..^ 3 ) -> j < 3 ) |
64 |
63
|
adantl |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> j < 3 ) |
65 |
64 60
|
breqtrrd |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> j < i ) |
66 |
59 62 65
|
ltnsymd |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> -. i < j ) |
67 |
66
|
pm2.21d |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) ) |
68 |
|
tbtru |
|- ( ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> T. ) ) |
69 |
67 68
|
sylib |
|- ( ( i = 3 /\ j e. ( 0 ..^ 3 ) ) -> ( ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> T. ) ) |
70 |
69
|
ralbidva |
|- ( i = 3 -> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> A. j e. ( 0 ..^ 3 ) T. ) ) |
71 |
|
3nn |
|- 3 e. NN |
72 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
73 |
71 72
|
mpbir |
|- 0 e. ( 0 ..^ 3 ) |
74 |
73
|
ne0ii |
|- ( 0 ..^ 3 ) =/= (/) |
75 |
|
r19.3rzv |
|- ( ( 0 ..^ 3 ) =/= (/) -> ( T. <-> A. j e. ( 0 ..^ 3 ) T. ) ) |
76 |
74 75
|
ax-mp |
|- ( T. <-> A. j e. ( 0 ..^ 3 ) T. ) |
77 |
70 76
|
bitr4di |
|- ( i = 3 -> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> T. ) ) |
78 |
|
breq1 |
|- ( i = 3 -> ( i < 3 <-> 3 < 3 ) ) |
79 |
61
|
ltnri |
|- -. 3 < 3 |
80 |
79
|
bifal |
|- ( 3 < 3 <-> F. ) |
81 |
78 80
|
bitrdi |
|- ( i = 3 -> ( i < 3 <-> F. ) ) |
82 |
81
|
imbi1d |
|- ( i = 3 -> ( ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( F. -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
83 |
|
falim |
|- ( F. -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) |
84 |
83
|
bitru |
|- ( ( F. -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> T. ) |
85 |
82 84
|
bitrdi |
|- ( i = 3 -> ( ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> T. ) ) |
86 |
77 85
|
anbi12d |
|- ( i = 3 -> ( ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( T. /\ T. ) ) ) |
87 |
|
anidm |
|- ( ( T. /\ T. ) <-> T. ) |
88 |
86 87
|
bitrdi |
|- ( i = 3 -> ( ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> T. ) ) |
89 |
88
|
ralunsn |
|- ( 3 e. NN0 -> ( A. i e. ( ( 0 ..^ 3 ) u. { 3 } ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) /\ T. ) ) ) |
90 |
36 89
|
ax-mp |
|- ( A. i e. ( ( 0 ..^ 3 ) u. { 3 } ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) /\ T. ) ) |
91 |
|
ancom |
|- ( ( A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) /\ T. ) <-> ( T. /\ A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
92 |
|
truan |
|- ( ( T. /\ A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) <-> A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
93 |
90 91 92
|
3bitri |
|- ( A. i e. ( ( 0 ..^ 3 ) u. { 3 } ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
94 |
55 93
|
bitrdi |
|- ( ph -> ( A. i e. dom <" A B C D "> ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
95 |
54 94
|
bitrd |
|- ( ph -> ( A. i e. dom <" A B C D "> A. j e. dom <" A B C D "> ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) ) |
96 |
|
r19.26 |
|- ( A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ A. i e. ( 0 ..^ 3 ) ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
97 |
6 7 8
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
98 |
|
wrdf |
|- ( <" A B C "> e. Word P -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
99 |
97 98
|
syl |
|- ( ph -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
100 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
101 |
100
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ 3 ) |
102 |
101
|
feq2i |
|- ( <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P <-> <" A B C "> : ( 0 ..^ 3 ) --> P ) |
103 |
99 102
|
sylib |
|- ( ph -> <" A B C "> : ( 0 ..^ 3 ) --> P ) |
104 |
103
|
fdmd |
|- ( ph -> dom <" A B C "> = ( 0 ..^ 3 ) ) |
105 |
104
|
raleqdv |
|- ( ph -> ( A. j e. dom <" A B C "> ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) <-> A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) ) |
106 |
104 105
|
raleqbidv |
|- ( ph -> ( A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) <-> A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) ) |
107 |
57
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) C_ RR ) |
108 |
10 11 12
|
s3cld |
|- ( ph -> <" W X Y "> e. Word P ) |
109 |
|
wrdf |
|- ( <" W X Y "> e. Word P -> <" W X Y "> : ( 0 ..^ ( # ` <" W X Y "> ) ) --> P ) |
110 |
108 109
|
syl |
|- ( ph -> <" W X Y "> : ( 0 ..^ ( # ` <" W X Y "> ) ) --> P ) |
111 |
|
s3len |
|- ( # ` <" W X Y "> ) = 3 |
112 |
111
|
oveq2i |
|- ( 0 ..^ ( # ` <" W X Y "> ) ) = ( 0 ..^ 3 ) |
113 |
112
|
feq2i |
|- ( <" W X Y "> : ( 0 ..^ ( # ` <" W X Y "> ) ) --> P <-> <" W X Y "> : ( 0 ..^ 3 ) --> P ) |
114 |
110 113
|
sylib |
|- ( ph -> <" W X Y "> : ( 0 ..^ 3 ) --> P ) |
115 |
1 2 4 5 107 103 114
|
iscgrglt |
|- ( ph -> ( <" A B C "> .~ <" W X Y "> <-> A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) ) |
116 |
|
df-s4 |
|- <" A B C D "> = ( <" A B C "> ++ <" D "> ) |
117 |
116
|
fveq1i |
|- ( <" A B C D "> ` i ) = ( ( <" A B C "> ++ <" D "> ) ` i ) |
118 |
6
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> A e. P ) |
119 |
7
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> B e. P ) |
120 |
8
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> C e. P ) |
121 |
118 119 120
|
s3cld |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> <" A B C "> e. Word P ) |
122 |
9
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> D e. P ) |
123 |
122
|
s1cld |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> <" D "> e. Word P ) |
124 |
|
simprl |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> i e. ( 0 ..^ 3 ) ) |
125 |
124 101
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> i e. ( 0 ..^ ( # ` <" A B C "> ) ) ) |
126 |
|
ccatval1 |
|- ( ( <" A B C "> e. Word P /\ <" D "> e. Word P /\ i e. ( 0 ..^ ( # ` <" A B C "> ) ) ) -> ( ( <" A B C "> ++ <" D "> ) ` i ) = ( <" A B C "> ` i ) ) |
127 |
121 123 125 126
|
syl3anc |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" A B C "> ++ <" D "> ) ` i ) = ( <" A B C "> ` i ) ) |
128 |
117 127
|
syl5eq |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( <" A B C D "> ` i ) = ( <" A B C "> ` i ) ) |
129 |
116
|
fveq1i |
|- ( <" A B C D "> ` j ) = ( ( <" A B C "> ++ <" D "> ) ` j ) |
130 |
|
simprr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> j e. ( 0 ..^ 3 ) ) |
131 |
130 101
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> j e. ( 0 ..^ ( # ` <" A B C "> ) ) ) |
132 |
|
ccatval1 |
|- ( ( <" A B C "> e. Word P /\ <" D "> e. Word P /\ j e. ( 0 ..^ ( # ` <" A B C "> ) ) ) -> ( ( <" A B C "> ++ <" D "> ) ` j ) = ( <" A B C "> ` j ) ) |
133 |
121 123 131 132
|
syl3anc |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" A B C "> ++ <" D "> ) ` j ) = ( <" A B C "> ` j ) ) |
134 |
129 133
|
syl5eq |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( <" A B C D "> ` j ) = ( <" A B C "> ` j ) ) |
135 |
128 134
|
oveq12d |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) ) |
136 |
|
df-s4 |
|- <" W X Y Z "> = ( <" W X Y "> ++ <" Z "> ) |
137 |
136
|
fveq1i |
|- ( <" W X Y Z "> ` i ) = ( ( <" W X Y "> ++ <" Z "> ) ` i ) |
138 |
10
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> W e. P ) |
139 |
11
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> X e. P ) |
140 |
12
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> Y e. P ) |
141 |
138 139 140
|
s3cld |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> <" W X Y "> e. Word P ) |
142 |
13
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> Z e. P ) |
143 |
142
|
s1cld |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> <" Z "> e. Word P ) |
144 |
124 112
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> i e. ( 0 ..^ ( # ` <" W X Y "> ) ) ) |
145 |
|
ccatval1 |
|- ( ( <" W X Y "> e. Word P /\ <" Z "> e. Word P /\ i e. ( 0 ..^ ( # ` <" W X Y "> ) ) ) -> ( ( <" W X Y "> ++ <" Z "> ) ` i ) = ( <" W X Y "> ` i ) ) |
146 |
141 143 144 145
|
syl3anc |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" W X Y "> ++ <" Z "> ) ` i ) = ( <" W X Y "> ` i ) ) |
147 |
137 146
|
syl5eq |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( <" W X Y Z "> ` i ) = ( <" W X Y "> ` i ) ) |
148 |
136
|
fveq1i |
|- ( <" W X Y Z "> ` j ) = ( ( <" W X Y "> ++ <" Z "> ) ` j ) |
149 |
130 112
|
eleqtrrdi |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> j e. ( 0 ..^ ( # ` <" W X Y "> ) ) ) |
150 |
|
ccatval1 |
|- ( ( <" W X Y "> e. Word P /\ <" Z "> e. Word P /\ j e. ( 0 ..^ ( # ` <" W X Y "> ) ) ) -> ( ( <" W X Y "> ++ <" Z "> ) ` j ) = ( <" W X Y "> ` j ) ) |
151 |
141 143 149 150
|
syl3anc |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" W X Y "> ++ <" Z "> ) ` j ) = ( <" W X Y "> ` j ) ) |
152 |
148 151
|
syl5eq |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( <" W X Y Z "> ` j ) = ( <" W X Y "> ` j ) ) |
153 |
147 152
|
oveq12d |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) |
154 |
135 153
|
eqeq12d |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) |
155 |
154
|
imbi2d |
|- ( ( ph /\ ( i e. ( 0 ..^ 3 ) /\ j e. ( 0 ..^ 3 ) ) ) -> ( ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) ) |
156 |
155
|
2ralbidva |
|- ( ph -> ( A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" W X Y "> ` i ) .- ( <" W X Y "> ` j ) ) ) ) ) |
157 |
106 115 156
|
3bitr4rd |
|- ( ph -> ( A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) <-> <" A B C "> .~ <" W X Y "> ) ) |
158 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
159 |
158
|
raleqi |
|- ( A. i e. ( 0 ..^ 3 ) ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> A. i e. { 0 , 1 , 2 } ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) |
160 |
|
3pos |
|- 0 < 3 |
161 |
|
breq1 |
|- ( i = 0 -> ( i < 3 <-> 0 < 3 ) ) |
162 |
160 161
|
mpbiri |
|- ( i = 0 -> i < 3 ) |
163 |
162
|
adantl |
|- ( ( ph /\ i = 0 ) -> i < 3 ) |
164 |
|
biimt |
|- ( i < 3 -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
165 |
163 164
|
syl |
|- ( ( ph /\ i = 0 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
166 |
|
fveq2 |
|- ( i = 0 -> ( <" A B C D "> ` i ) = ( <" A B C D "> ` 0 ) ) |
167 |
|
s4fv0 |
|- ( A e. P -> ( <" A B C D "> ` 0 ) = A ) |
168 |
6 167
|
syl |
|- ( ph -> ( <" A B C D "> ` 0 ) = A ) |
169 |
166 168
|
sylan9eqr |
|- ( ( ph /\ i = 0 ) -> ( <" A B C D "> ` i ) = A ) |
170 |
|
s4fv3 |
|- ( D e. P -> ( <" A B C D "> ` 3 ) = D ) |
171 |
9 170
|
syl |
|- ( ph -> ( <" A B C D "> ` 3 ) = D ) |
172 |
171
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" A B C D "> ` 3 ) = D ) |
173 |
169 172
|
oveq12d |
|- ( ( ph /\ i = 0 ) -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( A .- D ) ) |
174 |
|
fveq2 |
|- ( i = 0 -> ( <" W X Y Z "> ` i ) = ( <" W X Y Z "> ` 0 ) ) |
175 |
|
s4fv0 |
|- ( W e. P -> ( <" W X Y Z "> ` 0 ) = W ) |
176 |
10 175
|
syl |
|- ( ph -> ( <" W X Y Z "> ` 0 ) = W ) |
177 |
174 176
|
sylan9eqr |
|- ( ( ph /\ i = 0 ) -> ( <" W X Y Z "> ` i ) = W ) |
178 |
|
s4fv3 |
|- ( Z e. P -> ( <" W X Y Z "> ` 3 ) = Z ) |
179 |
13 178
|
syl |
|- ( ph -> ( <" W X Y Z "> ` 3 ) = Z ) |
180 |
179
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" W X Y Z "> ` 3 ) = Z ) |
181 |
177 180
|
oveq12d |
|- ( ( ph /\ i = 0 ) -> ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) = ( W .- Z ) ) |
182 |
173 181
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( A .- D ) = ( W .- Z ) ) ) |
183 |
165 182
|
bitr3d |
|- ( ( ph /\ i = 0 ) -> ( ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( A .- D ) = ( W .- Z ) ) ) |
184 |
|
1lt3 |
|- 1 < 3 |
185 |
|
breq1 |
|- ( i = 1 -> ( i < 3 <-> 1 < 3 ) ) |
186 |
184 185
|
mpbiri |
|- ( i = 1 -> i < 3 ) |
187 |
186
|
adantl |
|- ( ( ph /\ i = 1 ) -> i < 3 ) |
188 |
187 164
|
syl |
|- ( ( ph /\ i = 1 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
189 |
|
fveq2 |
|- ( i = 1 -> ( <" A B C D "> ` i ) = ( <" A B C D "> ` 1 ) ) |
190 |
|
s4fv1 |
|- ( B e. P -> ( <" A B C D "> ` 1 ) = B ) |
191 |
7 190
|
syl |
|- ( ph -> ( <" A B C D "> ` 1 ) = B ) |
192 |
189 191
|
sylan9eqr |
|- ( ( ph /\ i = 1 ) -> ( <" A B C D "> ` i ) = B ) |
193 |
171
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" A B C D "> ` 3 ) = D ) |
194 |
192 193
|
oveq12d |
|- ( ( ph /\ i = 1 ) -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( B .- D ) ) |
195 |
|
fveq2 |
|- ( i = 1 -> ( <" W X Y Z "> ` i ) = ( <" W X Y Z "> ` 1 ) ) |
196 |
|
s4fv1 |
|- ( X e. P -> ( <" W X Y Z "> ` 1 ) = X ) |
197 |
11 196
|
syl |
|- ( ph -> ( <" W X Y Z "> ` 1 ) = X ) |
198 |
195 197
|
sylan9eqr |
|- ( ( ph /\ i = 1 ) -> ( <" W X Y Z "> ` i ) = X ) |
199 |
179
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" W X Y Z "> ` 3 ) = Z ) |
200 |
198 199
|
oveq12d |
|- ( ( ph /\ i = 1 ) -> ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) = ( X .- Z ) ) |
201 |
194 200
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( B .- D ) = ( X .- Z ) ) ) |
202 |
188 201
|
bitr3d |
|- ( ( ph /\ i = 1 ) -> ( ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( B .- D ) = ( X .- Z ) ) ) |
203 |
|
2lt3 |
|- 2 < 3 |
204 |
|
breq1 |
|- ( i = 2 -> ( i < 3 <-> 2 < 3 ) ) |
205 |
203 204
|
mpbiri |
|- ( i = 2 -> i < 3 ) |
206 |
205
|
adantl |
|- ( ( ph /\ i = 2 ) -> i < 3 ) |
207 |
206 164
|
syl |
|- ( ( ph /\ i = 2 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) ) |
208 |
|
fveq2 |
|- ( i = 2 -> ( <" A B C D "> ` i ) = ( <" A B C D "> ` 2 ) ) |
209 |
|
s4fv2 |
|- ( C e. P -> ( <" A B C D "> ` 2 ) = C ) |
210 |
8 209
|
syl |
|- ( ph -> ( <" A B C D "> ` 2 ) = C ) |
211 |
208 210
|
sylan9eqr |
|- ( ( ph /\ i = 2 ) -> ( <" A B C D "> ` i ) = C ) |
212 |
171
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" A B C D "> ` 3 ) = D ) |
213 |
211 212
|
oveq12d |
|- ( ( ph /\ i = 2 ) -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( C .- D ) ) |
214 |
|
fveq2 |
|- ( i = 2 -> ( <" W X Y Z "> ` i ) = ( <" W X Y Z "> ` 2 ) ) |
215 |
|
s4fv2 |
|- ( Y e. P -> ( <" W X Y Z "> ` 2 ) = Y ) |
216 |
12 215
|
syl |
|- ( ph -> ( <" W X Y Z "> ` 2 ) = Y ) |
217 |
214 216
|
sylan9eqr |
|- ( ( ph /\ i = 2 ) -> ( <" W X Y Z "> ` i ) = Y ) |
218 |
179
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" W X Y Z "> ` 3 ) = Z ) |
219 |
217 218
|
oveq12d |
|- ( ( ph /\ i = 2 ) -> ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) = ( Y .- Z ) ) |
220 |
213 219
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) <-> ( C .- D ) = ( Y .- Z ) ) ) |
221 |
207 220
|
bitr3d |
|- ( ( ph /\ i = 2 ) -> ( ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( C .- D ) = ( Y .- Z ) ) ) |
222 |
|
0red |
|- ( ph -> 0 e. RR ) |
223 |
|
1red |
|- ( ph -> 1 e. RR ) |
224 |
|
2re |
|- 2 e. RR |
225 |
224
|
a1i |
|- ( ph -> 2 e. RR ) |
226 |
183 202 221 222 223 225
|
raltpd |
|- ( ph -> ( A. i e. { 0 , 1 , 2 } ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( ( A .- D ) = ( W .- Z ) /\ ( B .- D ) = ( X .- Z ) /\ ( C .- D ) = ( Y .- Z ) ) ) ) |
227 |
159 226
|
syl5bb |
|- ( ph -> ( A. i e. ( 0 ..^ 3 ) ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) <-> ( ( A .- D ) = ( W .- Z ) /\ ( B .- D ) = ( X .- Z ) /\ ( C .- D ) = ( Y .- Z ) ) ) ) |
228 |
157 227
|
anbi12d |
|- ( ph -> ( ( A. i e. ( 0 ..^ 3 ) A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ A. i e. ( 0 ..^ 3 ) ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( <" A B C "> .~ <" W X Y "> /\ ( ( A .- D ) = ( W .- Z ) /\ ( B .- D ) = ( X .- Z ) /\ ( C .- D ) = ( Y .- Z ) ) ) ) ) |
229 |
96 228
|
syl5bb |
|- ( ph -> ( A. i e. ( 0 ..^ 3 ) ( A. j e. ( 0 ..^ 3 ) ( i < j -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` j ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` j ) ) ) /\ ( i < 3 -> ( ( <" A B C D "> ` i ) .- ( <" A B C D "> ` 3 ) ) = ( ( <" W X Y Z "> ` i ) .- ( <" W X Y Z "> ` 3 ) ) ) ) <-> ( <" A B C "> .~ <" W X Y "> /\ ( ( A .- D ) = ( W .- Z ) /\ ( B .- D ) = ( X .- Z ) /\ ( C .- D ) = ( Y .- Z ) ) ) ) ) |
230 |
32 95 229
|
3bitrd |
|- ( ph -> ( <" A B C D "> .~ <" W X Y Z "> <-> ( <" A B C "> .~ <" W X Y "> /\ ( ( A .- D ) = ( W .- Z ) /\ ( B .- D ) = ( X .- Z ) /\ ( C .- D ) = ( Y .- Z ) ) ) ) ) |