Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
| tkgeom.d | |- .- = ( dist ` G ) |
||
| tkgeom.i | |- I = ( Itv ` G ) |
||
| tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
| tgcgrcomlr.a | |- ( ph -> A e. P ) |
||
| tgcgrcomlr.b | |- ( ph -> B e. P ) |
||
| tgcgrcomlr.c | |- ( ph -> C e. P ) |
||
| tgcgrcomlr.d | |- ( ph -> D e. P ) |
||
| tgcgrcomlr.6 | |- ( ph -> ( A .- B ) = ( C .- D ) ) |
||
| Assertion | tgcgrcomlr | |- ( ph -> ( B .- A ) = ( D .- C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | |- P = ( Base ` G ) |
|
| 2 | tkgeom.d | |- .- = ( dist ` G ) |
|
| 3 | tkgeom.i | |- I = ( Itv ` G ) |
|
| 4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tgcgrcomlr.a | |- ( ph -> A e. P ) |
|
| 6 | tgcgrcomlr.b | |- ( ph -> B e. P ) |
|
| 7 | tgcgrcomlr.c | |- ( ph -> C e. P ) |
|
| 8 | tgcgrcomlr.d | |- ( ph -> D e. P ) |
|
| 9 | tgcgrcomlr.6 | |- ( ph -> ( A .- B ) = ( C .- D ) ) |
|
| 10 | 1 2 3 4 5 6 | axtgcgrrflx | |- ( ph -> ( A .- B ) = ( B .- A ) ) |
| 11 | 1 2 3 4 7 8 | axtgcgrrflx | |- ( ph -> ( C .- D ) = ( D .- C ) ) |
| 12 | 9 10 11 | 3eqtr3d | |- ( ph -> ( B .- A ) = ( D .- C ) ) |