| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrcomlr.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrcomlr.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcgrcomlr.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgcgrcomlr.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							tgcgrcomlr.6 | 
							 |-  ( ph -> ( A .- B ) = ( C .- D ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> G e. TarskiG )  | 
						
						
							| 11 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> C e. P )  | 
						
						
							| 12 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> D e. P )  | 
						
						
							| 13 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> B e. P )  | 
						
						
							| 14 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( C .- D ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A = B ) -> A = B )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( B .- B ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqtr3d | 
							 |-  ( ( ph /\ A = B ) -> ( C .- D ) = ( B .- B ) )  | 
						
						
							| 18 | 
							
								1 2 3 10 11 12 13 17
							 | 
							axtgcgrid | 
							 |-  ( ( ph /\ A = B ) -> C = D )  | 
						
						
							| 19 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ C = D ) -> G e. TarskiG )  | 
						
						
							| 20 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ C = D ) -> A e. P )  | 
						
						
							| 21 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ C = D ) -> B e. P )  | 
						
						
							| 22 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ C = D ) -> D e. P )  | 
						
						
							| 23 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( C .- D ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ C = D ) -> C = D )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq1d | 
							 |-  ( ( ph /\ C = D ) -> ( C .- D ) = ( D .- D ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							eqtrd | 
							 |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( D .- D ) )  | 
						
						
							| 27 | 
							
								1 2 3 19 20 21 22 26
							 | 
							axtgcgrid | 
							 |-  ( ( ph /\ C = D ) -> A = B )  | 
						
						
							| 28 | 
							
								18 27
							 | 
							impbida | 
							 |-  ( ph -> ( A = B <-> C = D ) )  |