Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgcgrextend.a |
|- ( ph -> A e. P ) |
6 |
|
tgcgrextend.b |
|- ( ph -> B e. P ) |
7 |
|
tgcgrextend.c |
|- ( ph -> C e. P ) |
8 |
|
tgcgrextend.d |
|- ( ph -> D e. P ) |
9 |
|
tgcgrextend.e |
|- ( ph -> E e. P ) |
10 |
|
tgcgrextend.f |
|- ( ph -> F e. P ) |
11 |
|
tgcgrextend.1 |
|- ( ph -> B e. ( A I C ) ) |
12 |
|
tgcgrextend.2 |
|- ( ph -> E e. ( D I F ) ) |
13 |
|
tgcgrextend.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
14 |
|
tgcgrextend.4 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ A = B ) -> ( B .- C ) = ( E .- F ) ) |
16 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
17 |
16
|
oveq1d |
|- ( ( ph /\ A = B ) -> ( A .- C ) = ( B .- C ) ) |
18 |
4
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
19 |
5
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
20 |
6
|
adantr |
|- ( ( ph /\ A = B ) -> B e. P ) |
21 |
8
|
adantr |
|- ( ( ph /\ A = B ) -> D e. P ) |
22 |
9
|
adantr |
|- ( ( ph /\ A = B ) -> E e. P ) |
23 |
13
|
adantr |
|- ( ( ph /\ A = B ) -> ( A .- B ) = ( D .- E ) ) |
24 |
1 2 3 18 19 20 21 22 23 16
|
tgcgreq |
|- ( ( ph /\ A = B ) -> D = E ) |
25 |
24
|
oveq1d |
|- ( ( ph /\ A = B ) -> ( D .- F ) = ( E .- F ) ) |
26 |
15 17 25
|
3eqtr4d |
|- ( ( ph /\ A = B ) -> ( A .- C ) = ( D .- F ) ) |
27 |
4
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
28 |
7
|
adantr |
|- ( ( ph /\ A =/= B ) -> C e. P ) |
29 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
30 |
10
|
adantr |
|- ( ( ph /\ A =/= B ) -> F e. P ) |
31 |
8
|
adantr |
|- ( ( ph /\ A =/= B ) -> D e. P ) |
32 |
6
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
33 |
9
|
adantr |
|- ( ( ph /\ A =/= B ) -> E e. P ) |
34 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
35 |
11
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. ( A I C ) ) |
36 |
12
|
adantr |
|- ( ( ph /\ A =/= B ) -> E e. ( D I F ) ) |
37 |
13
|
adantr |
|- ( ( ph /\ A =/= B ) -> ( A .- B ) = ( D .- E ) ) |
38 |
14
|
adantr |
|- ( ( ph /\ A =/= B ) -> ( B .- C ) = ( E .- F ) ) |
39 |
1 2 3 27 29 31
|
tgcgrtriv |
|- ( ( ph /\ A =/= B ) -> ( A .- A ) = ( D .- D ) ) |
40 |
1 2 3 27 29 32 31 33 37
|
tgcgrcomlr |
|- ( ( ph /\ A =/= B ) -> ( B .- A ) = ( E .- D ) ) |
41 |
1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40
|
axtg5seg |
|- ( ( ph /\ A =/= B ) -> ( C .- A ) = ( F .- D ) ) |
42 |
1 2 3 27 28 29 30 31 41
|
tgcgrcomlr |
|- ( ( ph /\ A =/= B ) -> ( A .- C ) = ( D .- F ) ) |
43 |
26 42
|
pm2.61dane |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |