| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrextend.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrextend.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcgrextend.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgcgrextend.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							tgcgrextend.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							tgcgrextend.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							tgcgrextend.1 | 
							 |-  ( ph -> B e. ( A I C ) )  | 
						
						
							| 12 | 
							
								
							 | 
							tgcgrextend.2 | 
							 |-  ( ph -> E e. ( D I F ) )  | 
						
						
							| 13 | 
							
								
							 | 
							tgcgrextend.3 | 
							 |-  ( ph -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 14 | 
							
								
							 | 
							tgcgrextend.4 | 
							 |-  ( ph -> ( B .- C ) = ( E .- F ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> ( B .- C ) = ( E .- F ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A = B ) -> A = B )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							 |-  ( ( ph /\ A = B ) -> ( A .- C ) = ( B .- C ) )  | 
						
						
							| 18 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> G e. TarskiG )  | 
						
						
							| 19 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> A e. P )  | 
						
						
							| 20 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> B e. P )  | 
						
						
							| 21 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> D e. P )  | 
						
						
							| 22 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> E e. P )  | 
						
						
							| 23 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 24 | 
							
								1 2 3 18 19 20 21 22 23 16
							 | 
							tgcgreq | 
							 |-  ( ( ph /\ A = B ) -> D = E )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq1d | 
							 |-  ( ( ph /\ A = B ) -> ( D .- F ) = ( E .- F ) )  | 
						
						
							| 26 | 
							
								15 17 25
							 | 
							3eqtr4d | 
							 |-  ( ( ph /\ A = B ) -> ( A .- C ) = ( D .- F ) )  | 
						
						
							| 27 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> G e. TarskiG )  | 
						
						
							| 28 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> C e. P )  | 
						
						
							| 29 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> A e. P )  | 
						
						
							| 30 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> F e. P )  | 
						
						
							| 31 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> D e. P )  | 
						
						
							| 32 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> B e. P )  | 
						
						
							| 33 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> E e. P )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A =/= B ) -> A =/= B )  | 
						
						
							| 35 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> B e. ( A I C ) )  | 
						
						
							| 36 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> E e. ( D I F ) )  | 
						
						
							| 37 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 38 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ A =/= B ) -> ( B .- C ) = ( E .- F ) )  | 
						
						
							| 39 | 
							
								1 2 3 27 29 31
							 | 
							tgcgrtriv | 
							 |-  ( ( ph /\ A =/= B ) -> ( A .- A ) = ( D .- D ) )  | 
						
						
							| 40 | 
							
								1 2 3 27 29 32 31 33 37
							 | 
							tgcgrcomlr | 
							 |-  ( ( ph /\ A =/= B ) -> ( B .- A ) = ( E .- D ) )  | 
						
						
							| 41 | 
							
								1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40
							 | 
							axtg5seg | 
							 |-  ( ( ph /\ A =/= B ) -> ( C .- A ) = ( F .- D ) )  | 
						
						
							| 42 | 
							
								1 2 3 27 28 29 30 31 41
							 | 
							tgcgrcomlr | 
							 |-  ( ( ph /\ A =/= B ) -> ( A .- C ) = ( D .- F ) )  | 
						
						
							| 43 | 
							
								26 42
							 | 
							pm2.61dane | 
							 |-  ( ph -> ( A .- C ) = ( D .- F ) )  |