Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
tkgeom.d | |- .- = ( dist ` G ) |
||
tkgeom.i | |- I = ( Itv ` G ) |
||
tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
tgcgrcomlr.a | |- ( ph -> A e. P ) |
||
tgcgrcomlr.b | |- ( ph -> B e. P ) |
||
tgcgrcomlr.c | |- ( ph -> C e. P ) |
||
tgcgrcomlr.d | |- ( ph -> D e. P ) |
||
tgcgrcomlr.6 | |- ( ph -> ( A .- B ) = ( C .- D ) ) |
||
tgcgrneq.1 | |- ( ph -> A =/= B ) |
||
Assertion | tgcgrneq | |- ( ph -> C =/= D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | |- P = ( Base ` G ) |
|
2 | tkgeom.d | |- .- = ( dist ` G ) |
|
3 | tkgeom.i | |- I = ( Itv ` G ) |
|
4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgcgrcomlr.a | |- ( ph -> A e. P ) |
|
6 | tgcgrcomlr.b | |- ( ph -> B e. P ) |
|
7 | tgcgrcomlr.c | |- ( ph -> C e. P ) |
|
8 | tgcgrcomlr.d | |- ( ph -> D e. P ) |
|
9 | tgcgrcomlr.6 | |- ( ph -> ( A .- B ) = ( C .- D ) ) |
|
10 | tgcgrneq.1 | |- ( ph -> A =/= B ) |
|
11 | 1 2 3 4 5 6 7 8 9 | tgcgreqb | |- ( ph -> ( A = B <-> C = D ) ) |
12 | 11 | necon3bid | |- ( ph -> ( A =/= B <-> C =/= D ) ) |
13 | 10 12 | mpbid | |- ( ph -> C =/= D ) |