Metamath Proof Explorer


Theorem tgcgrsub

Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tgbtwncgr.p
|- P = ( Base ` G )
tgbtwncgr.m
|- .- = ( dist ` G )
tgbtwncgr.i
|- I = ( Itv ` G )
tgbtwncgr.g
|- ( ph -> G e. TarskiG )
tgbtwncgr.a
|- ( ph -> A e. P )
tgbtwncgr.b
|- ( ph -> B e. P )
tgbtwncgr.c
|- ( ph -> C e. P )
tgbtwncgr.d
|- ( ph -> D e. P )
tgcgrsub.e
|- ( ph -> E e. P )
tgcgrsub.f
|- ( ph -> F e. P )
tgcgrsub.1
|- ( ph -> B e. ( A I C ) )
tgcgrsub.2
|- ( ph -> E e. ( D I F ) )
tgcgrsub.3
|- ( ph -> ( A .- C ) = ( D .- F ) )
tgcgrsub.4
|- ( ph -> ( B .- C ) = ( E .- F ) )
Assertion tgcgrsub
|- ( ph -> ( A .- B ) = ( D .- E ) )

Proof

Step Hyp Ref Expression
1 tgbtwncgr.p
 |-  P = ( Base ` G )
2 tgbtwncgr.m
 |-  .- = ( dist ` G )
3 tgbtwncgr.i
 |-  I = ( Itv ` G )
4 tgbtwncgr.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwncgr.a
 |-  ( ph -> A e. P )
6 tgbtwncgr.b
 |-  ( ph -> B e. P )
7 tgbtwncgr.c
 |-  ( ph -> C e. P )
8 tgbtwncgr.d
 |-  ( ph -> D e. P )
9 tgcgrsub.e
 |-  ( ph -> E e. P )
10 tgcgrsub.f
 |-  ( ph -> F e. P )
11 tgcgrsub.1
 |-  ( ph -> B e. ( A I C ) )
12 tgcgrsub.2
 |-  ( ph -> E e. ( D I F ) )
13 tgcgrsub.3
 |-  ( ph -> ( A .- C ) = ( D .- F ) )
14 tgcgrsub.4
 |-  ( ph -> ( B .- C ) = ( E .- F ) )
15 1 2 3 4 5 8 tgcgrtriv
 |-  ( ph -> ( A .- A ) = ( D .- D ) )
16 1 2 3 4 5 7 8 10 13 tgcgrcomlr
 |-  ( ph -> ( C .- A ) = ( F .- D ) )
17 1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16 tgifscgr
 |-  ( ph -> ( B .- A ) = ( E .- D ) )
18 1 2 3 4 6 5 9 8 17 tgcgrcomlr
 |-  ( ph -> ( A .- B ) = ( D .- E ) )