Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwncgr.p | |- P = ( Base ` G ) |
|
tgbtwncgr.m | |- .- = ( dist ` G ) |
||
tgbtwncgr.i | |- I = ( Itv ` G ) |
||
tgbtwncgr.g | |- ( ph -> G e. TarskiG ) |
||
tgbtwncgr.a | |- ( ph -> A e. P ) |
||
tgbtwncgr.b | |- ( ph -> B e. P ) |
||
tgbtwncgr.c | |- ( ph -> C e. P ) |
||
tgbtwncgr.d | |- ( ph -> D e. P ) |
||
tgcgrsub.e | |- ( ph -> E e. P ) |
||
tgcgrsub.f | |- ( ph -> F e. P ) |
||
tgcgrsub.1 | |- ( ph -> B e. ( A I C ) ) |
||
tgcgrsub.2 | |- ( ph -> E e. ( D I F ) ) |
||
tgcgrsub.3 | |- ( ph -> ( A .- C ) = ( D .- F ) ) |
||
tgcgrsub.4 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
||
Assertion | tgcgrsub | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwncgr.p | |- P = ( Base ` G ) |
|
2 | tgbtwncgr.m | |- .- = ( dist ` G ) |
|
3 | tgbtwncgr.i | |- I = ( Itv ` G ) |
|
4 | tgbtwncgr.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgbtwncgr.a | |- ( ph -> A e. P ) |
|
6 | tgbtwncgr.b | |- ( ph -> B e. P ) |
|
7 | tgbtwncgr.c | |- ( ph -> C e. P ) |
|
8 | tgbtwncgr.d | |- ( ph -> D e. P ) |
|
9 | tgcgrsub.e | |- ( ph -> E e. P ) |
|
10 | tgcgrsub.f | |- ( ph -> F e. P ) |
|
11 | tgcgrsub.1 | |- ( ph -> B e. ( A I C ) ) |
|
12 | tgcgrsub.2 | |- ( ph -> E e. ( D I F ) ) |
|
13 | tgcgrsub.3 | |- ( ph -> ( A .- C ) = ( D .- F ) ) |
|
14 | tgcgrsub.4 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
|
15 | 1 2 3 4 5 8 | tgcgrtriv | |- ( ph -> ( A .- A ) = ( D .- D ) ) |
16 | 1 2 3 4 5 7 8 10 13 | tgcgrcomlr | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
17 | 1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16 | tgifscgr | |- ( ph -> ( B .- A ) = ( E .- D ) ) |
18 | 1 2 3 4 6 5 9 8 17 | tgcgrcomlr | |- ( ph -> ( A .- B ) = ( D .- E ) ) |