Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgbtwncgr.p | |- P = ( Base ` G ) |
|
| tgbtwncgr.m | |- .- = ( dist ` G ) |
||
| tgbtwncgr.i | |- I = ( Itv ` G ) |
||
| tgbtwncgr.g | |- ( ph -> G e. TarskiG ) |
||
| tgbtwncgr.a | |- ( ph -> A e. P ) |
||
| tgbtwncgr.b | |- ( ph -> B e. P ) |
||
| tgbtwncgr.c | |- ( ph -> C e. P ) |
||
| tgbtwncgr.d | |- ( ph -> D e. P ) |
||
| tgcgrsub.e | |- ( ph -> E e. P ) |
||
| tgcgrsub.f | |- ( ph -> F e. P ) |
||
| tgcgrsub.1 | |- ( ph -> B e. ( A I C ) ) |
||
| tgcgrsub.2 | |- ( ph -> E e. ( D I F ) ) |
||
| tgcgrsub.3 | |- ( ph -> ( A .- C ) = ( D .- F ) ) |
||
| tgcgrsub.4 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
||
| Assertion | tgcgrsub | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgbtwncgr.p | |- P = ( Base ` G ) |
|
| 2 | tgbtwncgr.m | |- .- = ( dist ` G ) |
|
| 3 | tgbtwncgr.i | |- I = ( Itv ` G ) |
|
| 4 | tgbtwncgr.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tgbtwncgr.a | |- ( ph -> A e. P ) |
|
| 6 | tgbtwncgr.b | |- ( ph -> B e. P ) |
|
| 7 | tgbtwncgr.c | |- ( ph -> C e. P ) |
|
| 8 | tgbtwncgr.d | |- ( ph -> D e. P ) |
|
| 9 | tgcgrsub.e | |- ( ph -> E e. P ) |
|
| 10 | tgcgrsub.f | |- ( ph -> F e. P ) |
|
| 11 | tgcgrsub.1 | |- ( ph -> B e. ( A I C ) ) |
|
| 12 | tgcgrsub.2 | |- ( ph -> E e. ( D I F ) ) |
|
| 13 | tgcgrsub.3 | |- ( ph -> ( A .- C ) = ( D .- F ) ) |
|
| 14 | tgcgrsub.4 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
|
| 15 | 1 2 3 4 5 8 | tgcgrtriv | |- ( ph -> ( A .- A ) = ( D .- D ) ) |
| 16 | 1 2 3 4 5 7 8 10 13 | tgcgrcomlr | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 17 | 1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16 | tgifscgr | |- ( ph -> ( B .- A ) = ( E .- D ) ) |
| 18 | 1 2 3 4 6 5 9 8 17 | tgcgrcomlr | |- ( ph -> ( A .- B ) = ( D .- E ) ) |