| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrtriv.1 | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrtriv.2 | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> G e. TarskiG )  | 
						
						
							| 8 | 
							
								5
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> A e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> x e. P )  | 
						
						
							| 10 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> B e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- x ) = ( B .- B ) )  | 
						
						
							| 12 | 
							
								1 2 3 7 8 9 10 11
							 | 
							axtgcgrid | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> A = x )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- A ) = ( A .- x ) )  | 
						
						
							| 14 | 
							
								13 11
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- A ) = ( B .- B ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 6 5 6 6
							 | 
							axtgsegcon | 
							 |-  ( ph -> E. x e. P ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							r19.29a | 
							 |-  ( ph -> ( A .- A ) = ( B .- B ) )  |