Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( B e. V -> ~P B e. _V ) |
2 |
|
inss1 |
|- ( B i^i ~P x ) C_ B |
3 |
|
vpwex |
|- ~P x e. _V |
4 |
3
|
inex2 |
|- ( B i^i ~P x ) e. _V |
5 |
4
|
elpw |
|- ( ( B i^i ~P x ) e. ~P B <-> ( B i^i ~P x ) C_ B ) |
6 |
2 5
|
mpbir |
|- ( B i^i ~P x ) e. ~P B |
7 |
6
|
a1i |
|- ( x e. ( topGen ` B ) -> ( B i^i ~P x ) e. ~P B ) |
8 |
|
unieq |
|- ( ( B i^i ~P x ) = ( B i^i ~P y ) -> U. ( B i^i ~P x ) = U. ( B i^i ~P y ) ) |
9 |
8
|
adantl |
|- ( ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) /\ ( B i^i ~P x ) = ( B i^i ~P y ) ) -> U. ( B i^i ~P x ) = U. ( B i^i ~P y ) ) |
10 |
|
eltg4i |
|- ( x e. ( topGen ` B ) -> x = U. ( B i^i ~P x ) ) |
11 |
10
|
ad2antrr |
|- ( ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) /\ ( B i^i ~P x ) = ( B i^i ~P y ) ) -> x = U. ( B i^i ~P x ) ) |
12 |
|
eltg4i |
|- ( y e. ( topGen ` B ) -> y = U. ( B i^i ~P y ) ) |
13 |
12
|
ad2antlr |
|- ( ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) /\ ( B i^i ~P x ) = ( B i^i ~P y ) ) -> y = U. ( B i^i ~P y ) ) |
14 |
9 11 13
|
3eqtr4d |
|- ( ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) /\ ( B i^i ~P x ) = ( B i^i ~P y ) ) -> x = y ) |
15 |
14
|
ex |
|- ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) -> ( ( B i^i ~P x ) = ( B i^i ~P y ) -> x = y ) ) |
16 |
|
pweq |
|- ( x = y -> ~P x = ~P y ) |
17 |
16
|
ineq2d |
|- ( x = y -> ( B i^i ~P x ) = ( B i^i ~P y ) ) |
18 |
15 17
|
impbid1 |
|- ( ( x e. ( topGen ` B ) /\ y e. ( topGen ` B ) ) -> ( ( B i^i ~P x ) = ( B i^i ~P y ) <-> x = y ) ) |
19 |
7 18
|
dom2 |
|- ( ~P B e. _V -> ( topGen ` B ) ~<_ ~P B ) |
20 |
1 19
|
syl |
|- ( B e. V -> ( topGen ` B ) ~<_ ~P B ) |