Metamath Proof Explorer


Theorem tgelrnln

Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
tgelrnln.x
|- ( ph -> X e. B )
tgelrnln.y
|- ( ph -> Y e. B )
tgelrnln.d
|- ( ph -> X =/= Y )
Assertion tgelrnln
|- ( ph -> ( X L Y ) e. ran L )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 tgelrnln.x
 |-  ( ph -> X e. B )
6 tgelrnln.y
 |-  ( ph -> Y e. B )
7 tgelrnln.d
 |-  ( ph -> X =/= Y )
8 df-ov
 |-  ( X L Y ) = ( L ` <. X , Y >. )
9 1 3 2 tglnfn
 |-  ( G e. TarskiG -> L Fn ( ( B X. B ) \ _I ) )
10 4 9 syl
 |-  ( ph -> L Fn ( ( B X. B ) \ _I ) )
11 5 6 opelxpd
 |-  ( ph -> <. X , Y >. e. ( B X. B ) )
12 df-br
 |-  ( X _I Y <-> <. X , Y >. e. _I )
13 ideqg
 |-  ( Y e. B -> ( X _I Y <-> X = Y ) )
14 12 13 bitr3id
 |-  ( Y e. B -> ( <. X , Y >. e. _I <-> X = Y ) )
15 14 necon3bbid
 |-  ( Y e. B -> ( -. <. X , Y >. e. _I <-> X =/= Y ) )
16 15 biimpar
 |-  ( ( Y e. B /\ X =/= Y ) -> -. <. X , Y >. e. _I )
17 6 7 16 syl2anc
 |-  ( ph -> -. <. X , Y >. e. _I )
18 11 17 eldifd
 |-  ( ph -> <. X , Y >. e. ( ( B X. B ) \ _I ) )
19 fnfvelrn
 |-  ( ( L Fn ( ( B X. B ) \ _I ) /\ <. X , Y >. e. ( ( B X. B ) \ _I ) ) -> ( L ` <. X , Y >. ) e. ran L )
20 10 18 19 syl2anc
 |-  ( ph -> ( L ` <. X , Y >. ) e. ran L )
21 8 20 eqeltrid
 |-  ( ph -> ( X L Y ) e. ran L )