| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiss |
|- ( ( J e. Top /\ A C_ J ) -> ( fi ` A ) C_ ( fi ` J ) ) |
| 2 |
|
fitop |
|- ( J e. Top -> ( fi ` J ) = J ) |
| 3 |
2
|
adantr |
|- ( ( J e. Top /\ A C_ J ) -> ( fi ` J ) = J ) |
| 4 |
1 3
|
sseqtrd |
|- ( ( J e. Top /\ A C_ J ) -> ( fi ` A ) C_ J ) |
| 5 |
|
tgss |
|- ( ( J e. Top /\ ( fi ` A ) C_ J ) -> ( topGen ` ( fi ` A ) ) C_ ( topGen ` J ) ) |
| 6 |
4 5
|
syldan |
|- ( ( J e. Top /\ A C_ J ) -> ( topGen ` ( fi ` A ) ) C_ ( topGen ` J ) ) |
| 7 |
|
tgtop |
|- ( J e. Top -> ( topGen ` J ) = J ) |
| 8 |
7
|
adantr |
|- ( ( J e. Top /\ A C_ J ) -> ( topGen ` J ) = J ) |
| 9 |
6 8
|
sseqtrd |
|- ( ( J e. Top /\ A C_ J ) -> ( topGen ` ( fi ` A ) ) C_ J ) |