Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglineelsb2.1 |
|- ( ph -> P e. B ) |
6 |
|
tglineelsb2.2 |
|- ( ph -> Q e. B ) |
7 |
|
tglineelsb2.4 |
|- ( ph -> P =/= Q ) |
8 |
1 2 3 4 5 6 7
|
tgelrnln |
|- ( ph -> ( P L Q ) e. ran L ) |
9 |
1 2 3 4 5 6 7
|
tglinerflx1 |
|- ( ph -> P e. ( P L Q ) ) |
10 |
1 2 3 4 5 6 7
|
tglinerflx2 |
|- ( ph -> Q e. ( P L Q ) ) |
11 |
|
eleq2 |
|- ( x = ( P L Q ) -> ( P e. x <-> P e. ( P L Q ) ) ) |
12 |
|
eleq2 |
|- ( x = ( P L Q ) -> ( Q e. x <-> Q e. ( P L Q ) ) ) |
13 |
11 12
|
anbi12d |
|- ( x = ( P L Q ) -> ( ( P e. x /\ Q e. x ) <-> ( P e. ( P L Q ) /\ Q e. ( P L Q ) ) ) ) |
14 |
13
|
rspcev |
|- ( ( ( P L Q ) e. ran L /\ ( P e. ( P L Q ) /\ Q e. ( P L Q ) ) ) -> E. x e. ran L ( P e. x /\ Q e. x ) ) |
15 |
8 9 10 14
|
syl12anc |
|- ( ph -> E. x e. ran L ( P e. x /\ Q e. x ) ) |