| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
|- P = ( Base ` G ) |
| 2 |
|
tglngval.l |
|- L = ( LineG ` G ) |
| 3 |
|
tglngval.i |
|- I = ( Itv ` G ) |
| 4 |
|
tglngval.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglngval.x |
|- ( ph -> X e. P ) |
| 6 |
|
tglngval.y |
|- ( ph -> Y e. P ) |
| 7 |
|
tgcolg.z |
|- ( ph -> Z e. P ) |
| 8 |
|
lnxfr.r |
|- .~ = ( cgrG ` G ) |
| 9 |
|
lnxfr.a |
|- ( ph -> A e. P ) |
| 10 |
|
lnxfr.b |
|- ( ph -> B e. P ) |
| 11 |
|
lnxfr.d |
|- .- = ( dist ` G ) |
| 12 |
|
tgidinside.1 |
|- ( ph -> Z e. ( X I Y ) ) |
| 13 |
|
tgidinside.2 |
|- ( ph -> ( X .- Z ) = ( X .- A ) ) |
| 14 |
|
tgidinside.3 |
|- ( ph -> ( Y .- Z ) = ( Y .- A ) ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ X = Y ) -> G e. TarskiG ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ X = Y ) -> X e. P ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ X = Y ) -> Z e. P ) |
| 18 |
12
|
adantr |
|- ( ( ph /\ X = Y ) -> Z e. ( X I Y ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ X = Y ) -> X = Y ) |
| 20 |
19
|
oveq2d |
|- ( ( ph /\ X = Y ) -> ( X I X ) = ( X I Y ) ) |
| 21 |
18 20
|
eleqtrrd |
|- ( ( ph /\ X = Y ) -> Z e. ( X I X ) ) |
| 22 |
1 11 3 15 16 17 21
|
axtgbtwnid |
|- ( ( ph /\ X = Y ) -> X = Z ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ X = Y ) -> A e. P ) |
| 24 |
13
|
adantr |
|- ( ( ph /\ X = Y ) -> ( X .- Z ) = ( X .- A ) ) |
| 25 |
1 11 3 15 16 17 16 23 24 22
|
tgcgreq |
|- ( ( ph /\ X = Y ) -> X = A ) |
| 26 |
22 25
|
eqtr3d |
|- ( ( ph /\ X = Y ) -> Z = A ) |
| 27 |
4
|
adantr |
|- ( ( ph /\ X =/= Y ) -> G e. TarskiG ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ X =/= Y ) -> X e. P ) |
| 29 |
6
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Y e. P ) |
| 30 |
7
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Z e. P ) |
| 31 |
9
|
adantr |
|- ( ( ph /\ X =/= Y ) -> A e. P ) |
| 32 |
10
|
adantr |
|- ( ( ph /\ X =/= Y ) -> B e. P ) |
| 33 |
|
simpr |
|- ( ( ph /\ X =/= Y ) -> X =/= Y ) |
| 34 |
1 2 3 4 5 7 6 12
|
btwncolg3 |
|- ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ X =/= Y ) -> ( Y e. ( X L Z ) \/ X = Z ) ) |
| 36 |
13
|
adantr |
|- ( ( ph /\ X =/= Y ) -> ( X .- Z ) = ( X .- A ) ) |
| 37 |
14
|
adantr |
|- ( ( ph /\ X =/= Y ) -> ( Y .- Z ) = ( Y .- A ) ) |
| 38 |
1 2 3 27 28 29 30 8 31 32 11 33 35 36 37
|
lnid |
|- ( ( ph /\ X =/= Y ) -> Z = A ) |
| 39 |
26 38
|
pm2.61dane |
|- ( ph -> Z = A ) |