Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwncgr.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwncgr.m |
|- .- = ( dist ` G ) |
3 |
|
tgbtwncgr.i |
|- I = ( Itv ` G ) |
4 |
|
tgbtwncgr.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwncgr.a |
|- ( ph -> A e. P ) |
6 |
|
tgbtwncgr.b |
|- ( ph -> B e. P ) |
7 |
|
tgbtwncgr.c |
|- ( ph -> C e. P ) |
8 |
|
tgbtwncgr.d |
|- ( ph -> D e. P ) |
9 |
|
tgifscgr.e |
|- ( ph -> E e. P ) |
10 |
|
tgifscgr.f |
|- ( ph -> F e. P ) |
11 |
|
tgifscgr.g |
|- ( ph -> K e. P ) |
12 |
|
tgifscgr.h |
|- ( ph -> H e. P ) |
13 |
|
tgifscgr.1 |
|- ( ph -> B e. ( A I C ) ) |
14 |
|
tgifscgr.2 |
|- ( ph -> F e. ( E I K ) ) |
15 |
|
tgifscgr.3 |
|- ( ph -> ( A .- C ) = ( E .- K ) ) |
16 |
|
tgifscgr.4 |
|- ( ph -> ( B .- C ) = ( F .- K ) ) |
17 |
|
tgifscgr.5 |
|- ( ph -> ( A .- D ) = ( E .- H ) ) |
18 |
|
tgifscgr.6 |
|- ( ph -> ( C .- D ) = ( K .- H ) ) |
19 |
4
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> G e. TarskiG ) |
20 |
6
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> B e. P ) |
21 |
8
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> D e. P ) |
22 |
10
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> F e. P ) |
23 |
|
simpr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> ( # ` P ) = 1 ) |
24 |
12
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> H e. P ) |
25 |
1 2 3 19 20 21 22 23 24
|
tgldim0cgr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> ( B .- D ) = ( F .- H ) ) |
26 |
18
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( C .- D ) = ( K .- H ) ) |
27 |
4
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> G e. TarskiG ) |
28 |
7
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> C e. P ) |
29 |
6
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> B e. P ) |
30 |
13
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> B e. ( A I C ) ) |
31 |
|
simpr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> A = C ) |
32 |
31
|
oveq1d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( A I C ) = ( C I C ) ) |
33 |
30 32
|
eleqtrd |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> B e. ( C I C ) ) |
34 |
1 2 3 27 28 29 33
|
axtgbtwnid |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> C = B ) |
35 |
34
|
oveq1d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( C .- D ) = ( B .- D ) ) |
36 |
11
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> K e. P ) |
37 |
10
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> F e. P ) |
38 |
14
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> F e. ( E I K ) ) |
39 |
9
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> E e. P ) |
40 |
5
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> A e. P ) |
41 |
31
|
oveq2d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( A .- A ) = ( A .- C ) ) |
42 |
15
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( A .- C ) = ( E .- K ) ) |
43 |
41 42
|
eqtr2d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( E .- K ) = ( A .- A ) ) |
44 |
1 2 3 27 39 36 40 43
|
axtgcgrid |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> E = K ) |
45 |
44
|
oveq1d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( E I K ) = ( K I K ) ) |
46 |
38 45
|
eleqtrd |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> F e. ( K I K ) ) |
47 |
1 2 3 27 36 37 46
|
axtgbtwnid |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> K = F ) |
48 |
47
|
oveq1d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( K .- H ) = ( F .- H ) ) |
49 |
26 35 48
|
3eqtr3d |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A = C ) -> ( B .- D ) = ( F .- H ) ) |
50 |
4
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> G e. TarskiG ) |
51 |
50
|
ad2antrr |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> G e. TarskiG ) |
52 |
51
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> G e. TarskiG ) |
53 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> e e. P ) |
54 |
7
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> C e. P ) |
55 |
54
|
ad2antrr |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> C e. P ) |
56 |
55
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> C e. P ) |
57 |
6
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> B e. P ) |
58 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> f e. P ) |
59 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> K e. P ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> K e. P ) |
61 |
10
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> F e. P ) |
62 |
8
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> D e. P ) |
63 |
12
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> H e. P ) |
64 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( C e. ( A I e ) /\ C =/= e ) ) |
65 |
64
|
simprd |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> C =/= e ) |
66 |
65
|
necomd |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> e =/= C ) |
67 |
5
|
ad2antrr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> A e. P ) |
68 |
67
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> A e. P ) |
69 |
13
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> B e. ( A I C ) ) |
70 |
64
|
simpld |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> C e. ( A I e ) ) |
71 |
1 2 3 52 68 57 56 53 69 70
|
tgbtwnexch3 |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> C e. ( B I e ) ) |
72 |
1 2 3 52 57 56 53 71
|
tgbtwncom |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> C e. ( e I B ) ) |
73 |
9
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> E e. P ) |
74 |
14
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> F e. ( E I K ) ) |
75 |
|
simprl |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> K e. ( E I f ) ) |
76 |
1 2 3 52 73 61 60 58 74 75
|
tgbtwnexch3 |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> K e. ( F I f ) ) |
77 |
1 2 3 52 61 60 58 76
|
tgbtwncom |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> K e. ( f I F ) ) |
78 |
|
simprr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( K .- f ) = ( C .- e ) ) |
79 |
78
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( C .- e ) = ( K .- f ) ) |
80 |
1 2 3 52 56 53 60 58 79
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( e .- C ) = ( f .- K ) ) |
81 |
16
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( B .- C ) = ( F .- K ) ) |
82 |
1 2 3 52 57 56 61 60 81
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( C .- B ) = ( K .- F ) ) |
83 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> A =/= C ) |
84 |
15
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( A .- C ) = ( E .- K ) ) |
85 |
17
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( A .- D ) = ( E .- H ) ) |
86 |
18
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( C .- D ) = ( K .- H ) ) |
87 |
1 2 3 52 68 56 53 73 60 58 62 63 83 70 75 84 79 85 86
|
axtg5seg |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( e .- D ) = ( f .- H ) ) |
88 |
1 2 3 52 53 56 57 58 60 61 62 63 66 72 77 80 82 87 86
|
axtg5seg |
|- ( ( ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) /\ f e. P ) /\ ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) -> ( B .- D ) = ( F .- H ) ) |
89 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> E e. P ) |
90 |
|
simplr |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> e e. P ) |
91 |
1 2 3 51 89 59 55 90
|
axtgsegcon |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> E. f e. P ( K e. ( E I f ) /\ ( K .- f ) = ( C .- e ) ) ) |
92 |
88 91
|
r19.29a |
|- ( ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) /\ e e. P ) /\ ( C e. ( A I e ) /\ C =/= e ) ) -> ( B .- D ) = ( F .- H ) ) |
93 |
|
simplr |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> 2 <_ ( # ` P ) ) |
94 |
1 2 3 50 67 54 93
|
tgbtwndiff |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> E. e e. P ( C e. ( A I e ) /\ C =/= e ) ) |
95 |
92 94
|
r19.29a |
|- ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ A =/= C ) -> ( B .- D ) = ( F .- H ) ) |
96 |
49 95
|
pm2.61dane |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> ( B .- D ) = ( F .- H ) ) |
97 |
1 5
|
tgldimor |
|- ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) |
98 |
25 96 97
|
mpjaodan |
|- ( ph -> ( B .- D ) = ( F .- H ) ) |