Step |
Hyp |
Ref |
Expression |
1 |
|
tgioo2.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
3 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
1
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
6 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
7 |
2 5 6
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ RR C_ CC ) -> ( J |`t RR ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
8 |
3 4 7
|
mp2an |
|- ( J |`t RR ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
9 |
2 8
|
tgioo |
|- ( topGen ` ran (,) ) = ( J |`t RR ) |