Metamath Proof Explorer


Theorem tgldim0cgr

Description: In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p
|- P = ( Base ` G )
tgbtwndiff.d
|- .- = ( dist ` G )
tgbtwndiff.i
|- I = ( Itv ` G )
tgbtwndiff.g
|- ( ph -> G e. TarskiG )
tgbtwndiff.a
|- ( ph -> A e. P )
tgbtwndiff.b
|- ( ph -> B e. P )
tgldim0itv.c
|- ( ph -> C e. P )
tgldim0itv.p
|- ( ph -> ( # ` P ) = 1 )
tgldim0itv.d
|- ( ph -> D e. P )
Assertion tgldim0cgr
|- ( ph -> ( A .- B ) = ( C .- D ) )

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p
 |-  P = ( Base ` G )
2 tgbtwndiff.d
 |-  .- = ( dist ` G )
3 tgbtwndiff.i
 |-  I = ( Itv ` G )
4 tgbtwndiff.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwndiff.a
 |-  ( ph -> A e. P )
6 tgbtwndiff.b
 |-  ( ph -> B e. P )
7 tgldim0itv.c
 |-  ( ph -> C e. P )
8 tgldim0itv.p
 |-  ( ph -> ( # ` P ) = 1 )
9 tgldim0itv.d
 |-  ( ph -> D e. P )
10 1 8 5 7 tgldim0eq
 |-  ( ph -> A = C )
11 1 8 6 9 tgldim0eq
 |-  ( ph -> B = D )
12 10 11 oveq12d
 |-  ( ph -> ( A .- B ) = ( C .- D ) )