| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgldim0.g |
|- P = ( E ` F ) |
| 2 |
|
tgldim0.p |
|- ( ph -> ( # ` P ) = 1 ) |
| 3 |
|
tgldim0.a |
|- ( ph -> A e. P ) |
| 4 |
|
tgldim0.b |
|- ( ph -> B e. P ) |
| 5 |
1
|
fvexi |
|- P e. _V |
| 6 |
|
hash1snb |
|- ( P e. _V -> ( ( # ` P ) = 1 <-> E. x P = { x } ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( # ` P ) = 1 <-> E. x P = { x } ) |
| 8 |
2 7
|
sylib |
|- ( ph -> E. x P = { x } ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ P = { x } ) -> A e. P ) |
| 10 |
|
simpr |
|- ( ( ph /\ P = { x } ) -> P = { x } ) |
| 11 |
9 10
|
eleqtrd |
|- ( ( ph /\ P = { x } ) -> A e. { x } ) |
| 12 |
|
elsni |
|- ( A e. { x } -> A = x ) |
| 13 |
11 12
|
syl |
|- ( ( ph /\ P = { x } ) -> A = x ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ P = { x } ) -> B e. P ) |
| 15 |
14 10
|
eleqtrd |
|- ( ( ph /\ P = { x } ) -> B e. { x } ) |
| 16 |
|
elsni |
|- ( B e. { x } -> B = x ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ P = { x } ) -> B = x ) |
| 18 |
13 17
|
eqtr4d |
|- ( ( ph /\ P = { x } ) -> A = B ) |
| 19 |
8 18
|
exlimddv |
|- ( ph -> A = B ) |