Step |
Hyp |
Ref |
Expression |
1 |
|
tgldimor.p |
|- P = ( E ` F ) |
2 |
|
tgldimor.a |
|- ( ph -> A e. P ) |
3 |
1
|
fvexi |
|- P e. _V |
4 |
|
hashv01gt1 |
|- ( P e. _V -> ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ 1 < ( # ` P ) ) ) |
5 |
3 4
|
ax-mp |
|- ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ 1 < ( # ` P ) ) |
6 |
|
3orass |
|- ( ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ 1 < ( # ` P ) ) <-> ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 1 < ( # ` P ) ) ) ) |
7 |
5 6
|
mpbi |
|- ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 1 < ( # ` P ) ) ) |
8 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
9 |
|
1z |
|- 1 e. ZZ |
10 |
|
nn0z |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
11 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ ( # ` P ) e. ZZ ) -> ( 1 < ( # ` P ) <-> ( 1 + 1 ) <_ ( # ` P ) ) ) |
12 |
9 10 11
|
sylancr |
|- ( ( # ` P ) e. NN0 -> ( 1 < ( # ` P ) <-> ( 1 + 1 ) <_ ( # ` P ) ) ) |
13 |
12
|
biimpac |
|- ( ( 1 < ( # ` P ) /\ ( # ` P ) e. NN0 ) -> ( 1 + 1 ) <_ ( # ` P ) ) |
14 |
8 13
|
eqbrtrrid |
|- ( ( 1 < ( # ` P ) /\ ( # ` P ) e. NN0 ) -> 2 <_ ( # ` P ) ) |
15 |
|
2re |
|- 2 e. RR |
16 |
15
|
rexri |
|- 2 e. RR* |
17 |
|
pnfge |
|- ( 2 e. RR* -> 2 <_ +oo ) |
18 |
16 17
|
ax-mp |
|- 2 <_ +oo |
19 |
|
breq2 |
|- ( ( # ` P ) = +oo -> ( 2 <_ ( # ` P ) <-> 2 <_ +oo ) ) |
20 |
18 19
|
mpbiri |
|- ( ( # ` P ) = +oo -> 2 <_ ( # ` P ) ) |
21 |
20
|
adantl |
|- ( ( 1 < ( # ` P ) /\ ( # ` P ) = +oo ) -> 2 <_ ( # ` P ) ) |
22 |
|
hashnn0pnf |
|- ( P e. _V -> ( ( # ` P ) e. NN0 \/ ( # ` P ) = +oo ) ) |
23 |
3 22
|
mp1i |
|- ( 1 < ( # ` P ) -> ( ( # ` P ) e. NN0 \/ ( # ` P ) = +oo ) ) |
24 |
14 21 23
|
mpjaodan |
|- ( 1 < ( # ` P ) -> 2 <_ ( # ` P ) ) |
25 |
24
|
orim2i |
|- ( ( ( # ` P ) = 1 \/ 1 < ( # ` P ) ) -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) |
26 |
25
|
orim2i |
|- ( ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 1 < ( # ` P ) ) ) -> ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) ) |
27 |
7 26
|
mp1i |
|- ( ph -> ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) ) |
28 |
|
ne0i |
|- ( A e. P -> P =/= (/) ) |
29 |
|
hasheq0 |
|- ( P e. _V -> ( ( # ` P ) = 0 <-> P = (/) ) ) |
30 |
3 29
|
ax-mp |
|- ( ( # ` P ) = 0 <-> P = (/) ) |
31 |
30
|
biimpi |
|- ( ( # ` P ) = 0 -> P = (/) ) |
32 |
31
|
necon3ai |
|- ( P =/= (/) -> -. ( # ` P ) = 0 ) |
33 |
2 28 32
|
3syl |
|- ( ph -> -. ( # ` P ) = 0 ) |
34 |
|
biorf |
|- ( -. ( # ` P ) = 0 -> ( ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) <-> ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) ) ) |
35 |
33 34
|
syl |
|- ( ph -> ( ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) <-> ( ( # ` P ) = 0 \/ ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) ) ) |
36 |
27 35
|
mpbird |
|- ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) |