Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglineelsb2.1 |
|- ( ph -> P e. B ) |
6 |
|
tglineelsb2.2 |
|- ( ph -> Q e. B ) |
7 |
|
tglineelsb2.4 |
|- ( ph -> P =/= Q ) |
8 |
4
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> G e. TarskiG ) |
9 |
6
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q e. B ) |
10 |
5
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> P e. B ) |
11 |
1 3 2 4 5 6 7
|
tglnssp |
|- ( ph -> ( P L Q ) C_ B ) |
12 |
11
|
sselda |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. B ) |
13 |
7
|
necomd |
|- ( ph -> Q =/= P ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q =/= P ) |
15 |
|
simpr |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( P L Q ) ) |
16 |
1 2 3 8 9 10 12 14 15
|
lncom |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( Q L P ) ) |
17 |
4
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> G e. TarskiG ) |
18 |
5
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> P e. B ) |
19 |
6
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> Q e. B ) |
20 |
1 3 2 4 6 5 13
|
tglnssp |
|- ( ph -> ( Q L P ) C_ B ) |
21 |
20
|
sselda |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. B ) |
22 |
7
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> P =/= Q ) |
23 |
|
simpr |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. ( Q L P ) ) |
24 |
1 2 3 17 18 19 21 22 23
|
lncom |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. ( P L Q ) ) |
25 |
16 24
|
impbida |
|- ( ph -> ( x e. ( P L Q ) <-> x e. ( Q L P ) ) ) |
26 |
25
|
eqrdv |
|- ( ph -> ( P L Q ) = ( Q L P ) ) |