Metamath Proof Explorer


Theorem tglinecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
tglineelsb2.1
|- ( ph -> P e. B )
tglineelsb2.2
|- ( ph -> Q e. B )
tglineelsb2.4
|- ( ph -> P =/= Q )
Assertion tglinecom
|- ( ph -> ( P L Q ) = ( Q L P ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 tglineelsb2.1
 |-  ( ph -> P e. B )
6 tglineelsb2.2
 |-  ( ph -> Q e. B )
7 tglineelsb2.4
 |-  ( ph -> P =/= Q )
8 4 adantr
 |-  ( ( ph /\ x e. ( P L Q ) ) -> G e. TarskiG )
9 6 adantr
 |-  ( ( ph /\ x e. ( P L Q ) ) -> Q e. B )
10 5 adantr
 |-  ( ( ph /\ x e. ( P L Q ) ) -> P e. B )
11 1 3 2 4 5 6 7 tglnssp
 |-  ( ph -> ( P L Q ) C_ B )
12 11 sselda
 |-  ( ( ph /\ x e. ( P L Q ) ) -> x e. B )
13 7 necomd
 |-  ( ph -> Q =/= P )
14 13 adantr
 |-  ( ( ph /\ x e. ( P L Q ) ) -> Q =/= P )
15 simpr
 |-  ( ( ph /\ x e. ( P L Q ) ) -> x e. ( P L Q ) )
16 1 2 3 8 9 10 12 14 15 lncom
 |-  ( ( ph /\ x e. ( P L Q ) ) -> x e. ( Q L P ) )
17 4 adantr
 |-  ( ( ph /\ x e. ( Q L P ) ) -> G e. TarskiG )
18 5 adantr
 |-  ( ( ph /\ x e. ( Q L P ) ) -> P e. B )
19 6 adantr
 |-  ( ( ph /\ x e. ( Q L P ) ) -> Q e. B )
20 1 3 2 4 6 5 13 tglnssp
 |-  ( ph -> ( Q L P ) C_ B )
21 20 sselda
 |-  ( ( ph /\ x e. ( Q L P ) ) -> x e. B )
22 7 adantr
 |-  ( ( ph /\ x e. ( Q L P ) ) -> P =/= Q )
23 simpr
 |-  ( ( ph /\ x e. ( Q L P ) ) -> x e. ( Q L P ) )
24 1 2 3 17 18 19 21 22 23 lncom
 |-  ( ( ph /\ x e. ( Q L P ) ) -> x e. ( P L Q ) )
25 16 24 impbida
 |-  ( ph -> ( x e. ( P L Q ) <-> x e. ( Q L P ) ) )
26 25 eqrdv
 |-  ( ph -> ( P L Q ) = ( Q L P ) )