Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglineelsb2.1 |
|- ( ph -> P e. B ) |
6 |
|
tglineelsb2.2 |
|- ( ph -> Q e. B ) |
7 |
|
tglineelsb2.4 |
|- ( ph -> P =/= Q ) |
8 |
|
tglineelsb2.3 |
|- ( ph -> S e. B ) |
9 |
|
tglineelsb2.5 |
|- ( ph -> S =/= P ) |
10 |
|
tglineelsb2.6 |
|- ( ph -> S e. ( P L Q ) ) |
11 |
4
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> G e. TarskiG ) |
12 |
5
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> P e. B ) |
13 |
8
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> S e. B ) |
14 |
9
|
necomd |
|- ( ph -> P =/= S ) |
15 |
14
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> P =/= S ) |
16 |
6
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q e. B ) |
17 |
7
|
necomd |
|- ( ph -> Q =/= P ) |
18 |
17
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q =/= P ) |
19 |
10
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> S e. ( P L Q ) ) |
20 |
1 2 3 11 16 12 13 18 19
|
lncom |
|- ( ( ph /\ x e. ( P L Q ) ) -> S e. ( Q L P ) ) |
21 |
1 2 3 11 12 13 16 15 20 18
|
lnrot1 |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q e. ( P L S ) ) |
22 |
1 3 2 4 5 6 7
|
tglnssp |
|- ( ph -> ( P L Q ) C_ B ) |
23 |
22
|
sselda |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. B ) |
24 |
|
simpr |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( P L Q ) ) |
25 |
1 2 3 11 12 13 15 16 18 21 23 24
|
tglineeltr |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( P L S ) ) |
26 |
4
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> G e. TarskiG ) |
27 |
5
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> P e. B ) |
28 |
6
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> Q e. B ) |
29 |
7
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> P =/= Q ) |
30 |
8
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> S e. B ) |
31 |
9
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> S =/= P ) |
32 |
10
|
adantr |
|- ( ( ph /\ x e. ( P L S ) ) -> S e. ( P L Q ) ) |
33 |
1 3 2 4 5 8 14
|
tglnssp |
|- ( ph -> ( P L S ) C_ B ) |
34 |
33
|
sselda |
|- ( ( ph /\ x e. ( P L S ) ) -> x e. B ) |
35 |
|
simpr |
|- ( ( ph /\ x e. ( P L S ) ) -> x e. ( P L S ) ) |
36 |
1 2 3 26 27 28 29 30 31 32 34 35
|
tglineeltr |
|- ( ( ph /\ x e. ( P L S ) ) -> x e. ( P L Q ) ) |
37 |
25 36
|
impbida |
|- ( ph -> ( x e. ( P L Q ) <-> x e. ( P L S ) ) ) |
38 |
37
|
eqrdv |
|- ( ph -> ( P L Q ) = ( P L S ) ) |