| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
| 2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglineelsb2.1 |
|- ( ph -> P e. B ) |
| 6 |
|
tglineelsb2.2 |
|- ( ph -> Q e. B ) |
| 7 |
|
tglineelsb2.4 |
|- ( ph -> P =/= Q ) |
| 8 |
|
tglinethru.0 |
|- ( ph -> P =/= Q ) |
| 9 |
|
tglinethru.1 |
|- ( ph -> A e. ran L ) |
| 10 |
|
tglinethru.2 |
|- ( ph -> P e. A ) |
| 11 |
|
tglinethru.3 |
|- ( ph -> Q e. A ) |
| 12 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> G e. TarskiG ) |
| 13 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> x e. B ) |
| 14 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> y e. B ) |
| 15 |
|
simplrr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> x =/= y ) |
| 16 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> Q e. B ) |
| 17 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> P =/= Q ) |
| 18 |
17
|
necomd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> Q =/= P ) |
| 19 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> P = x ) |
| 20 |
18 19
|
neeqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> Q =/= x ) |
| 21 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> Q e. A ) |
| 22 |
|
simplrl |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> A = ( x L y ) ) |
| 23 |
21 22
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> Q e. ( x L y ) ) |
| 24 |
1 2 3 12 13 14 15 16 20 23
|
tglineelsb2 |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> ( x L y ) = ( x L Q ) ) |
| 25 |
19
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> ( P L Q ) = ( x L Q ) ) |
| 26 |
24 22 25
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P = x ) -> A = ( P L Q ) ) |
| 27 |
|
simplrl |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> A = ( x L y ) ) |
| 28 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> G e. TarskiG ) |
| 29 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> x e. B ) |
| 30 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> y e. B ) |
| 31 |
|
simplrr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> x =/= y ) |
| 32 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> P e. B ) |
| 33 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> P =/= x ) |
| 34 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> P e. A ) |
| 35 |
34 27
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> P e. ( x L y ) ) |
| 36 |
1 2 3 28 29 30 31 32 33 35
|
tglineelsb2 |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> ( x L y ) = ( x L P ) ) |
| 37 |
33
|
necomd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> x =/= P ) |
| 38 |
1 2 3 28 29 32 37
|
tglinecom |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> ( x L P ) = ( P L x ) ) |
| 39 |
27 36 38
|
3eqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> A = ( P L x ) ) |
| 40 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> Q e. B ) |
| 41 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> P =/= Q ) |
| 42 |
41
|
necomd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> Q =/= P ) |
| 43 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> Q e. A ) |
| 44 |
43 39
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> Q e. ( P L x ) ) |
| 45 |
1 2 3 28 32 29 33 40 42 44
|
tglineelsb2 |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> ( P L x ) = ( P L Q ) ) |
| 46 |
39 45
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) /\ P =/= x ) -> A = ( P L Q ) ) |
| 47 |
26 46
|
pm2.61dane |
|- ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A = ( P L Q ) ) |
| 48 |
1 2 3 4 9
|
tgisline |
|- ( ph -> E. x e. B E. y e. B ( A = ( x L y ) /\ x =/= y ) ) |
| 49 |
47 48
|
r19.29vva |
|- ( ph -> A = ( P L Q ) ) |