Metamath Proof Explorer


Theorem tglinethrueu

Description: There is a unique line going through any two distinct points. Theorem 6.19 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
tglineelsb2.1
|- ( ph -> P e. B )
tglineelsb2.2
|- ( ph -> Q e. B )
tglineelsb2.4
|- ( ph -> P =/= Q )
Assertion tglinethrueu
|- ( ph -> E! x e. ran L ( P e. x /\ Q e. x ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 tglineelsb2.1
 |-  ( ph -> P e. B )
6 tglineelsb2.2
 |-  ( ph -> Q e. B )
7 tglineelsb2.4
 |-  ( ph -> P =/= Q )
8 1 2 3 4 5 6 7 tghilberti1
 |-  ( ph -> E. x e. ran L ( P e. x /\ Q e. x ) )
9 1 2 3 4 5 6 7 tghilberti2
 |-  ( ph -> E* x e. ran L ( P e. x /\ Q e. x ) )
10 reu5
 |-  ( E! x e. ran L ( P e. x /\ Q e. x ) <-> ( E. x e. ran L ( P e. x /\ Q e. x ) /\ E* x e. ran L ( P e. x /\ Q e. x ) ) )
11 8 9 10 sylanbrc
 |-  ( ph -> E! x e. ran L ( P e. x /\ Q e. x ) )