Description: There is a unique line going through any two distinct points. Theorem 6.19 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 25-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineelsb2.p | |- B = ( Base ` G ) |
|
tglineelsb2.i | |- I = ( Itv ` G ) |
||
tglineelsb2.l | |- L = ( LineG ` G ) |
||
tglineelsb2.g | |- ( ph -> G e. TarskiG ) |
||
tglineelsb2.1 | |- ( ph -> P e. B ) |
||
tglineelsb2.2 | |- ( ph -> Q e. B ) |
||
tglineelsb2.4 | |- ( ph -> P =/= Q ) |
||
Assertion | tglinethrueu | |- ( ph -> E! x e. ran L ( P e. x /\ Q e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | |- B = ( Base ` G ) |
|
2 | tglineelsb2.i | |- I = ( Itv ` G ) |
|
3 | tglineelsb2.l | |- L = ( LineG ` G ) |
|
4 | tglineelsb2.g | |- ( ph -> G e. TarskiG ) |
|
5 | tglineelsb2.1 | |- ( ph -> P e. B ) |
|
6 | tglineelsb2.2 | |- ( ph -> Q e. B ) |
|
7 | tglineelsb2.4 | |- ( ph -> P =/= Q ) |
|
8 | 1 2 3 4 5 6 7 | tghilberti1 | |- ( ph -> E. x e. ran L ( P e. x /\ Q e. x ) ) |
9 | 1 2 3 4 5 6 7 | tghilberti2 | |- ( ph -> E* x e. ran L ( P e. x /\ Q e. x ) ) |
10 | reu5 | |- ( E! x e. ran L ( P e. x /\ Q e. x ) <-> ( E. x e. ran L ( P e. x /\ Q e. x ) /\ E* x e. ran L ( P e. x /\ Q e. x ) ) ) |
|
11 | 8 9 10 | sylanbrc | |- ( ph -> E! x e. ran L ( P e. x /\ Q e. x ) ) |