Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
|- P = ( Base ` G ) |
2 |
|
tglngval.l |
|- L = ( LineG ` G ) |
3 |
|
tglngval.i |
|- I = ( Itv ` G ) |
4 |
|
tglngval.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglngval.x |
|- ( ph -> X e. P ) |
6 |
|
tglngval.y |
|- ( ph -> Y e. P ) |
7 |
|
tglngne.1 |
|- ( ph -> Z e. ( X L Y ) ) |
8 |
|
df-ov |
|- ( X L Y ) = ( L ` <. X , Y >. ) |
9 |
7 8
|
eleqtrdi |
|- ( ph -> Z e. ( L ` <. X , Y >. ) ) |
10 |
|
elfvdm |
|- ( Z e. ( L ` <. X , Y >. ) -> <. X , Y >. e. dom L ) |
11 |
9 10
|
syl |
|- ( ph -> <. X , Y >. e. dom L ) |
12 |
1 2 3
|
tglnfn |
|- ( G e. TarskiG -> L Fn ( ( P X. P ) \ _I ) ) |
13 |
|
fndm |
|- ( L Fn ( ( P X. P ) \ _I ) -> dom L = ( ( P X. P ) \ _I ) ) |
14 |
4 12 13
|
3syl |
|- ( ph -> dom L = ( ( P X. P ) \ _I ) ) |
15 |
11 14
|
eleqtrd |
|- ( ph -> <. X , Y >. e. ( ( P X. P ) \ _I ) ) |
16 |
15
|
eldifbd |
|- ( ph -> -. <. X , Y >. e. _I ) |
17 |
|
df-br |
|- ( X _I Y <-> <. X , Y >. e. _I ) |
18 |
|
ideqg |
|- ( Y e. P -> ( X _I Y <-> X = Y ) ) |
19 |
6 18
|
syl |
|- ( ph -> ( X _I Y <-> X = Y ) ) |
20 |
17 19
|
bitr3id |
|- ( ph -> ( <. X , Y >. e. _I <-> X = Y ) ) |
21 |
20
|
necon3bbid |
|- ( ph -> ( -. <. X , Y >. e. _I <-> X =/= Y ) ) |
22 |
16 21
|
mpbid |
|- ( ph -> X =/= Y ) |