Metamath Proof Explorer


Theorem tglngne

Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019)

Ref Expression
Hypotheses tglngval.p
|- P = ( Base ` G )
tglngval.l
|- L = ( LineG ` G )
tglngval.i
|- I = ( Itv ` G )
tglngval.g
|- ( ph -> G e. TarskiG )
tglngval.x
|- ( ph -> X e. P )
tglngval.y
|- ( ph -> Y e. P )
tglngne.1
|- ( ph -> Z e. ( X L Y ) )
Assertion tglngne
|- ( ph -> X =/= Y )

Proof

Step Hyp Ref Expression
1 tglngval.p
 |-  P = ( Base ` G )
2 tglngval.l
 |-  L = ( LineG ` G )
3 tglngval.i
 |-  I = ( Itv ` G )
4 tglngval.g
 |-  ( ph -> G e. TarskiG )
5 tglngval.x
 |-  ( ph -> X e. P )
6 tglngval.y
 |-  ( ph -> Y e. P )
7 tglngne.1
 |-  ( ph -> Z e. ( X L Y ) )
8 df-ov
 |-  ( X L Y ) = ( L ` <. X , Y >. )
9 7 8 eleqtrdi
 |-  ( ph -> Z e. ( L ` <. X , Y >. ) )
10 elfvdm
 |-  ( Z e. ( L ` <. X , Y >. ) -> <. X , Y >. e. dom L )
11 9 10 syl
 |-  ( ph -> <. X , Y >. e. dom L )
12 1 2 3 tglnfn
 |-  ( G e. TarskiG -> L Fn ( ( P X. P ) \ _I ) )
13 fndm
 |-  ( L Fn ( ( P X. P ) \ _I ) -> dom L = ( ( P X. P ) \ _I ) )
14 4 12 13 3syl
 |-  ( ph -> dom L = ( ( P X. P ) \ _I ) )
15 11 14 eleqtrd
 |-  ( ph -> <. X , Y >. e. ( ( P X. P ) \ _I ) )
16 15 eldifbd
 |-  ( ph -> -. <. X , Y >. e. _I )
17 df-br
 |-  ( X _I Y <-> <. X , Y >. e. _I )
18 ideqg
 |-  ( Y e. P -> ( X _I Y <-> X = Y ) )
19 6 18 syl
 |-  ( ph -> ( X _I Y <-> X = Y ) )
20 17 19 bitr3id
 |-  ( ph -> ( <. X , Y >. e. _I <-> X = Y ) )
21 20 necon3bbid
 |-  ( ph -> ( -. <. X , Y >. e. _I <-> X =/= Y ) )
22 16 21 mpbid
 |-  ( ph -> X =/= Y )