| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglnne0.l |
|- L = ( LineG ` G ) |
| 2 |
|
tglnne0.g |
|- ( ph -> G e. TarskiG ) |
| 3 |
|
tglnne0.1 |
|- ( ph -> A e. ran L ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
| 6 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) |
| 7 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( Base ` G ) ) |
| 8 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> y e. ( Base ` G ) ) |
| 9 |
|
simprr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x =/= y ) |
| 10 |
4 5 1 6 7 8 9
|
tglinerflx1 |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( x L y ) ) |
| 11 |
|
simprl |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A = ( x L y ) ) |
| 12 |
10 11
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. A ) |
| 13 |
12
|
ne0d |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A =/= (/) ) |
| 14 |
4 5 1 2 3
|
tgisline |
|- ( ph -> E. x e. ( Base ` G ) E. y e. ( Base ` G ) ( A = ( x L y ) /\ x =/= y ) ) |
| 15 |
13 14
|
r19.29vva |
|- ( ph -> A =/= (/) ) |