Step |
Hyp |
Ref |
Expression |
1 |
|
tglnne0.l |
|- L = ( LineG ` G ) |
2 |
|
tglnne0.g |
|- ( ph -> G e. TarskiG ) |
3 |
|
tglnne0.1 |
|- ( ph -> A e. ran L ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
6 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) |
7 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( Base ` G ) ) |
8 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> y e. ( Base ` G ) ) |
9 |
|
simprr |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x =/= y ) |
10 |
4 5 1 6 7 8 9
|
tglinerflx1 |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( x L y ) ) |
11 |
|
simprl |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A = ( x L y ) ) |
12 |
10 11
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. A ) |
13 |
12
|
ne0d |
|- ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A =/= (/) ) |
14 |
4 5 1 2 3
|
tgisline |
|- ( ph -> E. x e. ( Base ` G ) E. y e. ( Base ` G ) ( A = ( x L y ) /\ x =/= y ) ) |
15 |
13 14
|
r19.29vva |
|- ( ph -> A =/= (/) ) |