Metamath Proof Explorer


Theorem tglnpt

Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)

Ref Expression
Hypotheses tglng.p
|- P = ( Base ` G )
tglng.l
|- L = ( LineG ` G )
tglng.i
|- I = ( Itv ` G )
tglnpt.g
|- ( ph -> G e. TarskiG )
tglnpt.a
|- ( ph -> A e. ran L )
tglnpt.x
|- ( ph -> X e. A )
Assertion tglnpt
|- ( ph -> X e. P )

Proof

Step Hyp Ref Expression
1 tglng.p
 |-  P = ( Base ` G )
2 tglng.l
 |-  L = ( LineG ` G )
3 tglng.i
 |-  I = ( Itv ` G )
4 tglnpt.g
 |-  ( ph -> G e. TarskiG )
5 tglnpt.a
 |-  ( ph -> A e. ran L )
6 tglnpt.x
 |-  ( ph -> X e. A )
7 1 2 3 tglnunirn
 |-  ( G e. TarskiG -> U. ran L C_ P )
8 4 7 syl
 |-  ( ph -> U. ran L C_ P )
9 elssuni
 |-  ( A e. ran L -> A C_ U. ran L )
10 5 9 syl
 |-  ( ph -> A C_ U. ran L )
11 10 6 sseldd
 |-  ( ph -> X e. U. ran L )
12 8 11 sseldd
 |-  ( ph -> X e. P )