Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglng.p | |- P = ( Base ` G ) |
|
tglng.l | |- L = ( LineG ` G ) |
||
tglng.i | |- I = ( Itv ` G ) |
||
tglnpt.g | |- ( ph -> G e. TarskiG ) |
||
tglnpt.a | |- ( ph -> A e. ran L ) |
||
tglnpt.x | |- ( ph -> X e. A ) |
||
Assertion | tglnpt | |- ( ph -> X e. P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglng.p | |- P = ( Base ` G ) |
|
2 | tglng.l | |- L = ( LineG ` G ) |
|
3 | tglng.i | |- I = ( Itv ` G ) |
|
4 | tglnpt.g | |- ( ph -> G e. TarskiG ) |
|
5 | tglnpt.a | |- ( ph -> A e. ran L ) |
|
6 | tglnpt.x | |- ( ph -> X e. A ) |
|
7 | 1 2 3 | tglnunirn | |- ( G e. TarskiG -> U. ran L C_ P ) |
8 | 4 7 | syl | |- ( ph -> U. ran L C_ P ) |
9 | elssuni | |- ( A e. ran L -> A C_ U. ran L ) |
|
10 | 5 9 | syl | |- ( ph -> A C_ U. ran L ) |
11 | 10 6 | sseldd | |- ( ph -> X e. U. ran L ) |
12 | 8 11 | sseldd | |- ( ph -> X e. P ) |