Step |
Hyp |
Ref |
Expression |
1 |
|
tglnpt2.p |
|- P = ( Base ` G ) |
2 |
|
tglnpt2.i |
|- I = ( Itv ` G ) |
3 |
|
tglnpt2.l |
|- L = ( LineG ` G ) |
4 |
|
tglnpt2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglnpt2.a |
|- ( ph -> A e. ran L ) |
6 |
|
tglnpt2.x |
|- ( ph -> X e. A ) |
7 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> G e. TarskiG ) |
8 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> x e. P ) |
9 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. P ) |
10 |
|
simplrr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> x =/= z ) |
11 |
1 2 3 7 8 9 10
|
tglinerflx2 |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. ( x L z ) ) |
12 |
|
simplrl |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> A = ( x L z ) ) |
13 |
11 12
|
eleqtrrd |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> z e. A ) |
14 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> X = x ) |
15 |
14 10
|
eqnetrd |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> X =/= z ) |
16 |
|
neeq2 |
|- ( y = z -> ( X =/= y <-> X =/= z ) ) |
17 |
16
|
rspcev |
|- ( ( z e. A /\ X =/= z ) -> E. y e. A X =/= y ) |
18 |
13 15 17
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X = x ) -> E. y e. A X =/= y ) |
19 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> G e. TarskiG ) |
20 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. P ) |
21 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> z e. P ) |
22 |
|
simplrr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x =/= z ) |
23 |
1 2 3 19 20 21 22
|
tglinerflx1 |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. ( x L z ) ) |
24 |
|
simplrl |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> A = ( x L z ) ) |
25 |
23 24
|
eleqtrrd |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> x e. A ) |
26 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> X =/= x ) |
27 |
|
neeq2 |
|- ( y = x -> ( X =/= y <-> X =/= x ) ) |
28 |
27
|
rspcev |
|- ( ( x e. A /\ X =/= x ) -> E. y e. A X =/= y ) |
29 |
25 26 28
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) /\ X =/= x ) -> E. y e. A X =/= y ) |
30 |
18 29
|
pm2.61dane |
|- ( ( ( ( ph /\ x e. P ) /\ z e. P ) /\ ( A = ( x L z ) /\ x =/= z ) ) -> E. y e. A X =/= y ) |
31 |
1 2 3 4 5
|
tgisline |
|- ( ph -> E. x e. P E. z e. P ( A = ( x L z ) /\ x =/= z ) ) |
32 |
30 31
|
r19.29vva |
|- ( ph -> E. y e. A X =/= y ) |