Metamath Proof Explorer


Theorem tglnssp

Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglngval.p
|- P = ( Base ` G )
tglngval.l
|- L = ( LineG ` G )
tglngval.i
|- I = ( Itv ` G )
tglngval.g
|- ( ph -> G e. TarskiG )
tglngval.x
|- ( ph -> X e. P )
tglngval.y
|- ( ph -> Y e. P )
tglngval.z
|- ( ph -> X =/= Y )
Assertion tglnssp
|- ( ph -> ( X L Y ) C_ P )

Proof

Step Hyp Ref Expression
1 tglngval.p
 |-  P = ( Base ` G )
2 tglngval.l
 |-  L = ( LineG ` G )
3 tglngval.i
 |-  I = ( Itv ` G )
4 tglngval.g
 |-  ( ph -> G e. TarskiG )
5 tglngval.x
 |-  ( ph -> X e. P )
6 tglngval.y
 |-  ( ph -> Y e. P )
7 tglngval.z
 |-  ( ph -> X =/= Y )
8 1 2 3 4 5 6 7 tglngval
 |-  ( ph -> ( X L Y ) = { z e. P | ( z e. ( X I Y ) \/ X e. ( z I Y ) \/ Y e. ( X I z ) ) } )
9 ssrab2
 |-  { z e. P | ( z e. ( X I Y ) \/ X e. ( z I Y ) \/ Y e. ( X I z ) ) } C_ P
10 8 9 eqsstrdi
 |-  ( ph -> ( X L Y ) C_ P )