Metamath Proof Explorer


Theorem tglowdim1

Description: Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tglowdim1.p
|- P = ( Base ` G )
tglowdim1.d
|- .- = ( dist ` G )
tglowdim1.i
|- I = ( Itv ` G )
tglowdim1.g
|- ( ph -> G e. TarskiG )
tglowdim1.1
|- ( ph -> 2 <_ ( # ` P ) )
Assertion tglowdim1
|- ( ph -> E. x e. P E. y e. P x =/= y )

Proof

Step Hyp Ref Expression
1 tglowdim1.p
 |-  P = ( Base ` G )
2 tglowdim1.d
 |-  .- = ( dist ` G )
3 tglowdim1.i
 |-  I = ( Itv ` G )
4 tglowdim1.g
 |-  ( ph -> G e. TarskiG )
5 tglowdim1.1
 |-  ( ph -> 2 <_ ( # ` P ) )
6 1 fvexi
 |-  P e. _V
7 hashge2el2dif
 |-  ( ( P e. _V /\ 2 <_ ( # ` P ) ) -> E. x e. P E. y e. P x =/= y )
8 6 5 7 sylancr
 |-  ( ph -> E. x e. P E. y e. P x =/= y )