Step |
Hyp |
Ref |
Expression |
1 |
|
tgpconncomp.x |
|- X = ( Base ` G ) |
2 |
|
tgpconncomp.z |
|- .0. = ( 0g ` G ) |
3 |
|
tgpconncomp.j |
|- J = ( TopOpen ` G ) |
4 |
|
tgpconncomp.s |
|- S = U. { x e. ~P X | ( .0. e. x /\ ( J |`t x ) e. Conn ) } |
5 |
3 1
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` X ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> J e. ( TopOn ` X ) ) |
7 |
|
simp3 |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. J ) |
8 |
3
|
opnsubg |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. ( Clsd ` J ) ) |
9 |
7 8
|
elind |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. ( J i^i ( Clsd ` J ) ) ) |
10 |
2
|
subg0cl |
|- ( T e. ( SubGrp ` G ) -> .0. e. T ) |
11 |
10
|
3ad2ant2 |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> .0. e. T ) |
12 |
4
|
conncompclo |
|- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ .0. e. T ) -> S C_ T ) |
13 |
6 9 11 12
|
syl3anc |
|- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> S C_ T ) |