Step |
Hyp |
Ref |
Expression |
1 |
|
tgphaus.1 |
|- .0. = ( 0g ` G ) |
2 |
|
tgphaus.j |
|- J = ( TopOpen ` G ) |
3 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
4 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
6 |
3 5
|
syl |
|- ( G e. TopGrp -> .0. e. ( Base ` G ) ) |
7 |
2 4
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
8 |
|
toponuni |
|- ( J e. ( TopOn ` ( Base ` G ) ) -> ( Base ` G ) = U. J ) |
9 |
7 8
|
syl |
|- ( G e. TopGrp -> ( Base ` G ) = U. J ) |
10 |
6 9
|
eleqtrd |
|- ( G e. TopGrp -> .0. e. U. J ) |
11 |
|
eqid |
|- U. J = U. J |
12 |
11
|
sncld |
|- ( ( J e. Haus /\ .0. e. U. J ) -> { .0. } e. ( Clsd ` J ) ) |
13 |
12
|
expcom |
|- ( .0. e. U. J -> ( J e. Haus -> { .0. } e. ( Clsd ` J ) ) ) |
14 |
10 13
|
syl |
|- ( G e. TopGrp -> ( J e. Haus -> { .0. } e. ( Clsd ` J ) ) ) |
15 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
16 |
2 15
|
tgpsubcn |
|- ( G e. TopGrp -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
17 |
|
cnclima |
|- ( ( ( -g ` G ) e. ( ( J tX J ) Cn J ) /\ { .0. } e. ( Clsd ` J ) ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) |
18 |
17
|
ex |
|- ( ( -g ` G ) e. ( ( J tX J ) Cn J ) -> ( { .0. } e. ( Clsd ` J ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) ) |
19 |
16 18
|
syl |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) ) ) |
20 |
|
cnvimass |
|- ( `' ( -g ` G ) " { .0. } ) C_ dom ( -g ` G ) |
21 |
4 15
|
grpsubf |
|- ( G e. Grp -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
22 |
3 21
|
syl |
|- ( G e. TopGrp -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
23 |
20 22
|
fssdm |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
24 |
|
relxp |
|- Rel ( ( Base ` G ) X. ( Base ` G ) ) |
25 |
|
relss |
|- ( ( `' ( -g ` G ) " { .0. } ) C_ ( ( Base ` G ) X. ( Base ` G ) ) -> ( Rel ( ( Base ` G ) X. ( Base ` G ) ) -> Rel ( `' ( -g ` G ) " { .0. } ) ) ) |
26 |
23 24 25
|
mpisyl |
|- ( G e. TopGrp -> Rel ( `' ( -g ` G ) " { .0. } ) ) |
27 |
|
dfrel4v |
|- ( Rel ( `' ( -g ` G ) " { .0. } ) <-> ( `' ( -g ` G ) " { .0. } ) = { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } ) |
28 |
26 27
|
sylib |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) = { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } ) |
29 |
22
|
ffnd |
|- ( G e. TopGrp -> ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) ) |
30 |
|
elpreima |
|- ( ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) ) |
31 |
29 30
|
syl |
|- ( G e. TopGrp -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) ) |
32 |
|
opelxp |
|- ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) <-> ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) |
33 |
32
|
anbi1i |
|- ( ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) ) |
34 |
4 1 15
|
grpsubeq0 |
|- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
35 |
34
|
3expb |
|- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
36 |
3 35
|
sylan |
|- ( ( G e. TopGrp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( x ( -g ` G ) y ) = .0. <-> x = y ) ) |
37 |
|
df-ov |
|- ( x ( -g ` G ) y ) = ( ( -g ` G ) ` <. x , y >. ) |
38 |
37
|
eleq1i |
|- ( ( x ( -g ` G ) y ) e. { .0. } <-> ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) |
39 |
|
ovex |
|- ( x ( -g ` G ) y ) e. _V |
40 |
39
|
elsn |
|- ( ( x ( -g ` G ) y ) e. { .0. } <-> ( x ( -g ` G ) y ) = .0. ) |
41 |
38 40
|
bitr3i |
|- ( ( ( -g ` G ) ` <. x , y >. ) e. { .0. } <-> ( x ( -g ` G ) y ) = .0. ) |
42 |
|
equcom |
|- ( y = x <-> x = y ) |
43 |
36 41 42
|
3bitr4g |
|- ( ( G e. TopGrp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( ( ( -g ` G ) ` <. x , y >. ) e. { .0. } <-> y = x ) ) |
44 |
43
|
pm5.32da |
|- ( G e. TopGrp -> ( ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
45 |
33 44
|
syl5bb |
|- ( G e. TopGrp -> ( ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
46 |
31 45
|
bitrd |
|- ( G e. TopGrp -> ( <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) ) |
47 |
|
df-br |
|- ( x ( `' ( -g ` G ) " { .0. } ) y <-> <. x , y >. e. ( `' ( -g ` G ) " { .0. } ) ) |
48 |
|
eleq1w |
|- ( y = x -> ( y e. ( Base ` G ) <-> x e. ( Base ` G ) ) ) |
49 |
48
|
biimparc |
|- ( ( x e. ( Base ` G ) /\ y = x ) -> y e. ( Base ` G ) ) |
50 |
49
|
pm4.71i |
|- ( ( x e. ( Base ` G ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y = x ) /\ y e. ( Base ` G ) ) ) |
51 |
|
an32 |
|- ( ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y = x ) /\ y e. ( Base ` G ) ) ) |
52 |
50 51
|
bitr4i |
|- ( ( x e. ( Base ` G ) /\ y = x ) <-> ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) /\ y = x ) ) |
53 |
46 47 52
|
3bitr4g |
|- ( G e. TopGrp -> ( x ( `' ( -g ` G ) " { .0. } ) y <-> ( x e. ( Base ` G ) /\ y = x ) ) ) |
54 |
53
|
opabbidv |
|- ( G e. TopGrp -> { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } = { <. x , y >. | ( x e. ( Base ` G ) /\ y = x ) } ) |
55 |
|
opabresid |
|- ( _I |` ( Base ` G ) ) = { <. x , y >. | ( x e. ( Base ` G ) /\ y = x ) } |
56 |
54 55
|
eqtr4di |
|- ( G e. TopGrp -> { <. x , y >. | x ( `' ( -g ` G ) " { .0. } ) y } = ( _I |` ( Base ` G ) ) ) |
57 |
9
|
reseq2d |
|- ( G e. TopGrp -> ( _I |` ( Base ` G ) ) = ( _I |` U. J ) ) |
58 |
28 56 57
|
3eqtrd |
|- ( G e. TopGrp -> ( `' ( -g ` G ) " { .0. } ) = ( _I |` U. J ) ) |
59 |
58
|
eleq1d |
|- ( G e. TopGrp -> ( ( `' ( -g ` G ) " { .0. } ) e. ( Clsd ` ( J tX J ) ) <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
60 |
19 59
|
sylibd |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
61 |
|
topontop |
|- ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) |
62 |
7 61
|
syl |
|- ( G e. TopGrp -> J e. Top ) |
63 |
11
|
hausdiag |
|- ( J e. Haus <-> ( J e. Top /\ ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
64 |
63
|
baib |
|- ( J e. Top -> ( J e. Haus <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
65 |
62 64
|
syl |
|- ( G e. TopGrp -> ( J e. Haus <-> ( _I |` U. J ) e. ( Clsd ` ( J tX J ) ) ) ) |
66 |
60 65
|
sylibrd |
|- ( G e. TopGrp -> ( { .0. } e. ( Clsd ` J ) -> J e. Haus ) ) |
67 |
14 66
|
impbid |
|- ( G e. TopGrp -> ( J e. Haus <-> { .0. } e. ( Clsd ` J ) ) ) |