| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgpmulg.j |  |-  J = ( TopOpen ` G ) | 
						
							| 2 |  | tgpmulg.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | zex |  |-  ZZ e. _V | 
						
							| 4 | 3 | a1i |  |-  ( G e. TopGrp -> ZZ e. _V ) | 
						
							| 5 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 6 | 1 5 | tgptopon |  |-  ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) | 
						
							| 7 |  | topontop |  |-  ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) | 
						
							| 8 | 6 7 | syl |  |-  ( G e. TopGrp -> J e. Top ) | 
						
							| 9 | 5 2 | mulgfn |  |-  .x. Fn ( ZZ X. ( Base ` G ) ) | 
						
							| 10 | 9 | a1i |  |-  ( G e. TopGrp -> .x. Fn ( ZZ X. ( Base ` G ) ) ) | 
						
							| 11 | 1 2 5 | tgpmulg |  |-  ( ( G e. TopGrp /\ n e. ZZ ) -> ( x e. ( Base ` G ) |-> ( n .x. x ) ) e. ( J Cn J ) ) | 
						
							| 12 | 4 6 8 10 11 | txdis1cn |  |-  ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) ) |