Step |
Hyp |
Ref |
Expression |
1 |
|
tgpsubcn.2 |
|- J = ( TopOpen ` G ) |
2 |
|
tgpsubcn.3 |
|- .- = ( -g ` G ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
6 |
3 4 5 2
|
grpsubfval |
|- .- = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) |
7 |
|
tgptmd |
|- ( G e. TopGrp -> G e. TopMnd ) |
8 |
1 3
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
9 |
8 8
|
cnmpt1st |
|- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> x ) e. ( ( J tX J ) Cn J ) ) |
10 |
8 8
|
cnmpt2nd |
|- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> y ) e. ( ( J tX J ) Cn J ) ) |
11 |
1 5
|
tgpinv |
|- ( G e. TopGrp -> ( invg ` G ) e. ( J Cn J ) ) |
12 |
8 8 10 11
|
cnmpt21f |
|- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( ( invg ` G ) ` y ) ) e. ( ( J tX J ) Cn J ) ) |
13 |
1 4 7 8 8 9 12
|
cnmpt2plusg |
|- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) e. ( ( J tX J ) Cn J ) ) |
14 |
6 13
|
eqeltrid |
|- ( G e. TopGrp -> .- e. ( ( J tX J ) Cn J ) ) |