Step |
Hyp |
Ref |
Expression |
1 |
|
tgptsmscls.b |
|- B = ( Base ` G ) |
2 |
|
tgptsmscls.j |
|- J = ( TopOpen ` G ) |
3 |
|
tgptsmscls.1 |
|- ( ph -> G e. CMnd ) |
4 |
|
tgptsmscls.2 |
|- ( ph -> G e. TopGrp ) |
5 |
|
tgptsmscls.a |
|- ( ph -> A e. V ) |
6 |
|
tgptsmscls.f |
|- ( ph -> F : A --> B ) |
7 |
2 1
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` B ) ) |
8 |
4 7
|
syl |
|- ( ph -> J e. ( TopOn ` B ) ) |
9 |
|
topontop |
|- ( J e. ( TopOn ` B ) -> J e. Top ) |
10 |
8 9
|
syl |
|- ( ph -> J e. Top ) |
11 |
|
0cld |
|- ( J e. Top -> (/) e. ( Clsd ` J ) ) |
12 |
10 11
|
syl |
|- ( ph -> (/) e. ( Clsd ` J ) ) |
13 |
|
eleq1 |
|- ( ( G tsums F ) = (/) -> ( ( G tsums F ) e. ( Clsd ` J ) <-> (/) e. ( Clsd ` J ) ) ) |
14 |
12 13
|
syl5ibrcom |
|- ( ph -> ( ( G tsums F ) = (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
15 |
|
n0 |
|- ( ( G tsums F ) =/= (/) <-> E. x x e. ( G tsums F ) ) |
16 |
3
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
17 |
4
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
18 |
5
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
19 |
6
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
20 |
|
simpr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
21 |
1 2 16 17 18 19 20
|
tgptsmscls |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) = ( ( cls ` J ) ` { x } ) ) |
22 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
23 |
4 22
|
syl |
|- ( ph -> G e. TopSp ) |
24 |
1 3 23 5 6
|
tsmscl |
|- ( ph -> ( G tsums F ) C_ B ) |
25 |
|
toponuni |
|- ( J e. ( TopOn ` B ) -> B = U. J ) |
26 |
8 25
|
syl |
|- ( ph -> B = U. J ) |
27 |
24 26
|
sseqtrd |
|- ( ph -> ( G tsums F ) C_ U. J ) |
28 |
27
|
sselda |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. U. J ) |
29 |
28
|
snssd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { x } C_ U. J ) |
30 |
|
eqid |
|- U. J = U. J |
31 |
30
|
clscld |
|- ( ( J e. Top /\ { x } C_ U. J ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
32 |
10 29 31
|
syl2an2r |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
33 |
21 32
|
eqeltrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) e. ( Clsd ` J ) ) |
34 |
33
|
ex |
|- ( ph -> ( x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
35 |
34
|
exlimdv |
|- ( ph -> ( E. x x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
36 |
15 35
|
syl5bi |
|- ( ph -> ( ( G tsums F ) =/= (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
37 |
14 36
|
pm2.61dne |
|- ( ph -> ( G tsums F ) e. ( Clsd ` J ) ) |