Step |
Hyp |
Ref |
Expression |
1 |
|
tgptsmscls.b |
|- B = ( Base ` G ) |
2 |
|
tgptsmscls.j |
|- J = ( TopOpen ` G ) |
3 |
|
tgptsmscls.1 |
|- ( ph -> G e. CMnd ) |
4 |
|
tgptsmscls.2 |
|- ( ph -> G e. TopGrp ) |
5 |
|
tgptsmscls.a |
|- ( ph -> A e. V ) |
6 |
|
tgptsmscls.f |
|- ( ph -> F : A --> B ) |
7 |
|
tgptsmscls.x |
|- ( ph -> X e. ( G tsums F ) ) |
8 |
4
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
9 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
10 |
8 9
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Grp ) |
11 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
12 |
11
|
0subg |
|- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
13 |
10 12
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
14 |
2
|
clssubg |
|- ( ( G e. TopGrp /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
15 |
8 13 14
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
16 |
|
eqid |
|- ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
17 |
1 16
|
eqger |
|- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
18 |
15 17
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
19 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
20 |
4 19
|
syl |
|- ( ph -> G e. TopSp ) |
21 |
1 3 20 5 6
|
tsmscl |
|- ( ph -> ( G tsums F ) C_ B ) |
22 |
21
|
sselda |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. B ) |
23 |
21 7
|
sseldd |
|- ( ph -> X e. B ) |
24 |
23
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X e. B ) |
25 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
26 |
3
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
27 |
5
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
28 |
6
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
29 |
7
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X e. ( G tsums F ) ) |
30 |
|
simpr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
31 |
1 25 26 8 27 28 28 29 30
|
tsmssub |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( G tsums ( F oF ( -g ` G ) F ) ) ) |
32 |
28
|
ffvelrnda |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( F ` k ) e. B ) |
33 |
28
|
feqmptd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F = ( k e. A |-> ( F ` k ) ) ) |
34 |
27 32 32 33 33
|
offval2 |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) ) |
35 |
10
|
adantr |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> G e. Grp ) |
36 |
1 11 25
|
grpsubid |
|- ( ( G e. Grp /\ ( F ` k ) e. B ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
37 |
35 32 36
|
syl2anc |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
38 |
37
|
mpteq2dva |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) = ( k e. A |-> ( 0g ` G ) ) ) |
39 |
34 38
|
eqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( 0g ` G ) ) ) |
40 |
39
|
oveq2d |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( G tsums ( k e. A |-> ( 0g ` G ) ) ) ) |
41 |
8 19
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopSp ) |
42 |
1 11
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
43 |
10 42
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( 0g ` G ) e. B ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( 0g ` G ) e. B ) |
45 |
44
|
fmpttd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) : A --> B ) |
46 |
|
fconstmpt |
|- ( A X. { ( 0g ` G ) } ) = ( k e. A |-> ( 0g ` G ) ) |
47 |
|
fvexd |
|- ( ph -> ( 0g ` G ) e. _V ) |
48 |
5 47
|
fczfsuppd |
|- ( ph -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
49 |
48
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
50 |
46 49
|
eqbrtrrid |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) finSupp ( 0g ` G ) ) |
51 |
1 11 26 41 27 45 50 2
|
tsmsgsum |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( k e. A |-> ( 0g ` G ) ) ) = ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) ) |
52 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
53 |
26 52
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Mnd ) |
54 |
11
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
55 |
53 27 54
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
56 |
55
|
sneqd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } = { ( 0g ` G ) } ) |
57 |
56
|
fveq2d |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
58 |
40 51 57
|
3eqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
59 |
31 58
|
eleqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
60 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
61 |
10 26 60
|
sylanbrc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Abel ) |
62 |
1
|
subgss |
|- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
63 |
15 62
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
64 |
1 25 16
|
eqgabl |
|- ( ( G e. Abel /\ ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
65 |
61 63 64
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
66 |
22 24 59 65
|
mpbir3and |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X ) |
67 |
18 66
|
ersym |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
68 |
16
|
releqg |
|- Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
69 |
|
relelec |
|- ( Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) -> ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) ) |
70 |
68 69
|
ax-mp |
|- ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
71 |
67 70
|
sylibr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) |
72 |
|
eqid |
|- ( ( cls ` J ) ` { ( 0g ` G ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) |
73 |
1 2 11 16 72
|
snclseqg |
|- ( ( G e. TopGrp /\ X e. B ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
74 |
8 24 73
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
75 |
71 74
|
eleqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( ( cls ` J ) ` { X } ) ) |
76 |
75
|
ex |
|- ( ph -> ( x e. ( G tsums F ) -> x e. ( ( cls ` J ) ` { X } ) ) ) |
77 |
76
|
ssrdv |
|- ( ph -> ( G tsums F ) C_ ( ( cls ` J ) ` { X } ) ) |
78 |
1 2 3 20 5 6 7
|
tsmscls |
|- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( G tsums F ) ) |
79 |
77 78
|
eqssd |
|- ( ph -> ( G tsums F ) = ( ( cls ` J ) ` { X } ) ) |