Step |
Hyp |
Ref |
Expression |
1 |
|
tgqioo.1 |
|- Q = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
2 |
|
imassrn |
|- ( (,) " ( QQ X. QQ ) ) C_ ran (,) |
3 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
4 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
5 |
3 4
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
6 |
|
simpll |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> x e. RR* ) |
7 |
|
elioo1 |
|- ( ( x e. RR* /\ y e. RR* ) -> ( z e. ( x (,) y ) <-> ( z e. RR* /\ x < z /\ z < y ) ) ) |
8 |
7
|
biimpa |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( z e. RR* /\ x < z /\ z < y ) ) |
9 |
8
|
simp1d |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> z e. RR* ) |
10 |
8
|
simp2d |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> x < z ) |
11 |
|
qbtwnxr |
|- ( ( x e. RR* /\ z e. RR* /\ x < z ) -> E. u e. QQ ( x < u /\ u < z ) ) |
12 |
6 9 10 11
|
syl3anc |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. u e. QQ ( x < u /\ u < z ) ) |
13 |
|
simplr |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> y e. RR* ) |
14 |
8
|
simp3d |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> z < y ) |
15 |
|
qbtwnxr |
|- ( ( z e. RR* /\ y e. RR* /\ z < y ) -> E. v e. QQ ( z < v /\ v < y ) ) |
16 |
9 13 14 15
|
syl3anc |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. v e. QQ ( z < v /\ v < y ) ) |
17 |
|
reeanv |
|- ( E. u e. QQ E. v e. QQ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) <-> ( E. u e. QQ ( x < u /\ u < z ) /\ E. v e. QQ ( z < v /\ v < y ) ) ) |
18 |
|
df-ov |
|- ( u (,) v ) = ( (,) ` <. u , v >. ) |
19 |
|
opelxpi |
|- ( ( u e. QQ /\ v e. QQ ) -> <. u , v >. e. ( QQ X. QQ ) ) |
20 |
19
|
3ad2ant2 |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> <. u , v >. e. ( QQ X. QQ ) ) |
21 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
22 |
3 21
|
ax-mp |
|- Fun (,) |
23 |
|
qssre |
|- QQ C_ RR |
24 |
|
ressxr |
|- RR C_ RR* |
25 |
23 24
|
sstri |
|- QQ C_ RR* |
26 |
|
xpss12 |
|- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
27 |
25 25 26
|
mp2an |
|- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
28 |
3
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
29 |
27 28
|
sseqtrri |
|- ( QQ X. QQ ) C_ dom (,) |
30 |
|
funfvima2 |
|- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( <. u , v >. e. ( QQ X. QQ ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) ) |
31 |
22 29 30
|
mp2an |
|- ( <. u , v >. e. ( QQ X. QQ ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) |
32 |
20 31
|
syl |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) |
33 |
18 32
|
eqeltrid |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) e. ( (,) " ( QQ X. QQ ) ) ) |
34 |
9
|
3ad2ant1 |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z e. RR* ) |
35 |
|
simp3lr |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u < z ) |
36 |
|
simp3rl |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z < v ) |
37 |
|
simp2l |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u e. QQ ) |
38 |
25 37
|
sselid |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u e. RR* ) |
39 |
|
simp2r |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v e. QQ ) |
40 |
25 39
|
sselid |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v e. RR* ) |
41 |
|
elioo1 |
|- ( ( u e. RR* /\ v e. RR* ) -> ( z e. ( u (,) v ) <-> ( z e. RR* /\ u < z /\ z < v ) ) ) |
42 |
38 40 41
|
syl2anc |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( z e. ( u (,) v ) <-> ( z e. RR* /\ u < z /\ z < v ) ) ) |
43 |
34 35 36 42
|
mpbir3and |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z e. ( u (,) v ) ) |
44 |
6
|
3ad2ant1 |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x e. RR* ) |
45 |
|
simp3ll |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x < u ) |
46 |
44 38 45
|
xrltled |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x <_ u ) |
47 |
|
iooss1 |
|- ( ( x e. RR* /\ x <_ u ) -> ( u (,) v ) C_ ( x (,) v ) ) |
48 |
44 46 47
|
syl2anc |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) C_ ( x (,) v ) ) |
49 |
13
|
3ad2ant1 |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> y e. RR* ) |
50 |
|
simp3rr |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v < y ) |
51 |
40 49 50
|
xrltled |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v <_ y ) |
52 |
|
iooss2 |
|- ( ( y e. RR* /\ v <_ y ) -> ( x (,) v ) C_ ( x (,) y ) ) |
53 |
49 51 52
|
syl2anc |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( x (,) v ) C_ ( x (,) y ) ) |
54 |
48 53
|
sstrd |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) C_ ( x (,) y ) ) |
55 |
|
eleq2 |
|- ( w = ( u (,) v ) -> ( z e. w <-> z e. ( u (,) v ) ) ) |
56 |
|
sseq1 |
|- ( w = ( u (,) v ) -> ( w C_ ( x (,) y ) <-> ( u (,) v ) C_ ( x (,) y ) ) ) |
57 |
55 56
|
anbi12d |
|- ( w = ( u (,) v ) -> ( ( z e. w /\ w C_ ( x (,) y ) ) <-> ( z e. ( u (,) v ) /\ ( u (,) v ) C_ ( x (,) y ) ) ) ) |
58 |
57
|
rspcev |
|- ( ( ( u (,) v ) e. ( (,) " ( QQ X. QQ ) ) /\ ( z e. ( u (,) v ) /\ ( u (,) v ) C_ ( x (,) y ) ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
59 |
33 43 54 58
|
syl12anc |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
60 |
59
|
3exp |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( ( u e. QQ /\ v e. QQ ) -> ( ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) ) |
61 |
60
|
rexlimdvv |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( E. u e. QQ E. v e. QQ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
62 |
17 61
|
syl5bir |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( ( E. u e. QQ ( x < u /\ u < z ) /\ E. v e. QQ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
63 |
12 16 62
|
mp2and |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
64 |
63
|
ralrimiva |
|- ( ( x e. RR* /\ y e. RR* ) -> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
65 |
|
qtopbas |
|- ( (,) " ( QQ X. QQ ) ) e. TopBases |
66 |
|
eltg2b |
|- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
67 |
65 66
|
ax-mp |
|- ( ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
68 |
64 67
|
sylibr |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) |
69 |
68
|
rgen2 |
|- A. x e. RR* A. y e. RR* ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
70 |
|
ffnov |
|- ( (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) ) |
71 |
5 69 70
|
mpbir2an |
|- (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
72 |
|
frn |
|- ( (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) -> ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) |
73 |
71 72
|
ax-mp |
|- ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
74 |
|
2basgen |
|- ( ( ( (,) " ( QQ X. QQ ) ) C_ ran (,) /\ ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ran (,) ) ) |
75 |
2 73 74
|
mp2an |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ran (,) ) |
76 |
1 75
|
eqtr2i |
|- ( topGen ` ran (,) ) = Q |