Description: First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then third sides are equal in length. Theorem 11.49 of Schwabhauser p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgsas.p | |- P = ( Base ` G )  | 
					|
| tgsas.m | |- .- = ( dist ` G )  | 
					||
| tgsas.i | |- I = ( Itv ` G )  | 
					||
| tgsas.g | |- ( ph -> G e. TarskiG )  | 
					||
| tgsas.a | |- ( ph -> A e. P )  | 
					||
| tgsas.b | |- ( ph -> B e. P )  | 
					||
| tgsas.c | |- ( ph -> C e. P )  | 
					||
| tgsas.d | |- ( ph -> D e. P )  | 
					||
| tgsas.e | |- ( ph -> E e. P )  | 
					||
| tgsas.f | |- ( ph -> F e. P )  | 
					||
| tgsas.1 | |- ( ph -> ( A .- B ) = ( D .- E ) )  | 
					||
| tgsas.2 | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )  | 
					||
| tgsas.3 | |- ( ph -> ( B .- C ) = ( E .- F ) )  | 
					||
| Assertion | tgsas1 | |- ( ph -> ( C .- A ) = ( F .- D ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tgsas.p | |- P = ( Base ` G )  | 
						|
| 2 | tgsas.m | |- .- = ( dist ` G )  | 
						|
| 3 | tgsas.i | |- I = ( Itv ` G )  | 
						|
| 4 | tgsas.g | |- ( ph -> G e. TarskiG )  | 
						|
| 5 | tgsas.a | |- ( ph -> A e. P )  | 
						|
| 6 | tgsas.b | |- ( ph -> B e. P )  | 
						|
| 7 | tgsas.c | |- ( ph -> C e. P )  | 
						|
| 8 | tgsas.d | |- ( ph -> D e. P )  | 
						|
| 9 | tgsas.e | |- ( ph -> E e. P )  | 
						|
| 10 | tgsas.f | |- ( ph -> F e. P )  | 
						|
| 11 | tgsas.1 | |- ( ph -> ( A .- B ) = ( D .- E ) )  | 
						|
| 12 | tgsas.2 | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )  | 
						|
| 13 | tgsas.3 | |- ( ph -> ( B .- C ) = ( E .- F ) )  | 
						|
| 14 | eqid | |- ( hlG ` G ) = ( hlG ` G )  | 
						|
| 15 | 1 3 14 4 5 6 7 8 9 10 12 | cgrane1 | |- ( ph -> A =/= B )  | 
						
| 16 | 1 3 14 5 5 6 4 15 | hlid | |- ( ph -> A ( ( hlG ` G ) ` B ) A )  | 
						
| 17 | 1 3 14 4 5 6 7 8 9 10 12 | cgrane2 | |- ( ph -> B =/= C )  | 
						
| 18 | 17 | necomd | |- ( ph -> C =/= B )  | 
						
| 19 | 1 3 14 7 5 6 4 18 | hlid | |- ( ph -> C ( ( hlG ` G ) ` B ) C )  | 
						
| 20 | 1 2 3 4 5 6 8 9 11 | tgcgrcomlr | |- ( ph -> ( B .- A ) = ( E .- D ) )  | 
						
| 21 | 1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13 | cgracgr | |- ( ph -> ( A .- C ) = ( D .- F ) )  | 
						
| 22 | 1 2 3 4 5 7 8 10 21 | tgcgrcomlr | |- ( ph -> ( C .- A ) = ( F .- D ) )  |