Metamath Proof Explorer


Theorem tgsegconeq

Description: Two points that satisfy the conclusion of axtgsegcon are identical. Uniqueness portion of Theorem 2.12 of Schwabhauser p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgcgrextend.a
|- ( ph -> A e. P )
tgcgrextend.b
|- ( ph -> B e. P )
tgcgrextend.c
|- ( ph -> C e. P )
tgcgrextend.d
|- ( ph -> D e. P )
tgcgrextend.e
|- ( ph -> E e. P )
tgcgrextend.f
|- ( ph -> F e. P )
tgsegconeq.1
|- ( ph -> D =/= A )
tgsegconeq.2
|- ( ph -> A e. ( D I E ) )
tgsegconeq.3
|- ( ph -> A e. ( D I F ) )
tgsegconeq.4
|- ( ph -> ( A .- E ) = ( B .- C ) )
tgsegconeq.5
|- ( ph -> ( A .- F ) = ( B .- C ) )
Assertion tgsegconeq
|- ( ph -> E = F )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgcgrextend.a
 |-  ( ph -> A e. P )
6 tgcgrextend.b
 |-  ( ph -> B e. P )
7 tgcgrextend.c
 |-  ( ph -> C e. P )
8 tgcgrextend.d
 |-  ( ph -> D e. P )
9 tgcgrextend.e
 |-  ( ph -> E e. P )
10 tgcgrextend.f
 |-  ( ph -> F e. P )
11 tgsegconeq.1
 |-  ( ph -> D =/= A )
12 tgsegconeq.2
 |-  ( ph -> A e. ( D I E ) )
13 tgsegconeq.3
 |-  ( ph -> A e. ( D I F ) )
14 tgsegconeq.4
 |-  ( ph -> ( A .- E ) = ( B .- C ) )
15 tgsegconeq.5
 |-  ( ph -> ( A .- F ) = ( B .- C ) )
16 eqidd
 |-  ( ph -> ( D .- A ) = ( D .- A ) )
17 eqidd
 |-  ( ph -> ( A .- E ) = ( A .- E ) )
18 14 15 eqtr4d
 |-  ( ph -> ( A .- E ) = ( A .- F ) )
19 1 2 3 4 8 5 9 8 5 10 12 13 16 18 tgcgrextend
 |-  ( ph -> ( D .- E ) = ( D .- F ) )
20 1 2 3 4 8 5 9 8 5 9 9 10 11 12 12 16 17 19 18 axtg5seg
 |-  ( ph -> ( E .- E ) = ( E .- F ) )
21 20 eqcomd
 |-  ( ph -> ( E .- F ) = ( E .- E ) )
22 1 2 3 4 9 10 9 21 axtgcgrid
 |-  ( ph -> E = F )