Description: Two points that satisfy the conclusion of axtgsegcon are identical. Uniqueness portion of Theorem 2.12 of Schwabhauser p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | |- P = ( Base ` G )  | 
					|
| tkgeom.d | |- .- = ( dist ` G )  | 
					||
| tkgeom.i | |- I = ( Itv ` G )  | 
					||
| tkgeom.g | |- ( ph -> G e. TarskiG )  | 
					||
| tgcgrextend.a | |- ( ph -> A e. P )  | 
					||
| tgcgrextend.b | |- ( ph -> B e. P )  | 
					||
| tgcgrextend.c | |- ( ph -> C e. P )  | 
					||
| tgcgrextend.d | |- ( ph -> D e. P )  | 
					||
| tgcgrextend.e | |- ( ph -> E e. P )  | 
					||
| tgcgrextend.f | |- ( ph -> F e. P )  | 
					||
| tgsegconeq.1 | |- ( ph -> D =/= A )  | 
					||
| tgsegconeq.2 | |- ( ph -> A e. ( D I E ) )  | 
					||
| tgsegconeq.3 | |- ( ph -> A e. ( D I F ) )  | 
					||
| tgsegconeq.4 | |- ( ph -> ( A .- E ) = ( B .- C ) )  | 
					||
| tgsegconeq.5 | |- ( ph -> ( A .- F ) = ( B .- C ) )  | 
					||
| Assertion | tgsegconeq | |- ( ph -> E = F )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tkgeom.p | |- P = ( Base ` G )  | 
						|
| 2 | tkgeom.d | |- .- = ( dist ` G )  | 
						|
| 3 | tkgeom.i | |- I = ( Itv ` G )  | 
						|
| 4 | tkgeom.g | |- ( ph -> G e. TarskiG )  | 
						|
| 5 | tgcgrextend.a | |- ( ph -> A e. P )  | 
						|
| 6 | tgcgrextend.b | |- ( ph -> B e. P )  | 
						|
| 7 | tgcgrextend.c | |- ( ph -> C e. P )  | 
						|
| 8 | tgcgrextend.d | |- ( ph -> D e. P )  | 
						|
| 9 | tgcgrextend.e | |- ( ph -> E e. P )  | 
						|
| 10 | tgcgrextend.f | |- ( ph -> F e. P )  | 
						|
| 11 | tgsegconeq.1 | |- ( ph -> D =/= A )  | 
						|
| 12 | tgsegconeq.2 | |- ( ph -> A e. ( D I E ) )  | 
						|
| 13 | tgsegconeq.3 | |- ( ph -> A e. ( D I F ) )  | 
						|
| 14 | tgsegconeq.4 | |- ( ph -> ( A .- E ) = ( B .- C ) )  | 
						|
| 15 | tgsegconeq.5 | |- ( ph -> ( A .- F ) = ( B .- C ) )  | 
						|
| 16 | eqidd | |- ( ph -> ( D .- A ) = ( D .- A ) )  | 
						|
| 17 | eqidd | |- ( ph -> ( A .- E ) = ( A .- E ) )  | 
						|
| 18 | 14 15 | eqtr4d | |- ( ph -> ( A .- E ) = ( A .- F ) )  | 
						
| 19 | 1 2 3 4 8 5 9 8 5 10 12 13 16 18 | tgcgrextend | |- ( ph -> ( D .- E ) = ( D .- F ) )  | 
						
| 20 | 1 2 3 4 8 5 9 8 5 9 9 10 11 12 12 16 17 19 18 | axtg5seg | |- ( ph -> ( E .- E ) = ( E .- F ) )  | 
						
| 21 | 20 | eqcomd | |- ( ph -> ( E .- F ) = ( E .- E ) )  | 
						
| 22 | 1 2 3 4 9 10 9 21 | axtgcgrid | |- ( ph -> E = F )  |