Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | thincc | |- ( C e. ThinCat -> C e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
2 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
3 | 1 2 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
4 | 3 | simplbi | |- ( C e. ThinCat -> C e. Cat ) |