| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thinchom.x |  |-  ( ph -> X e. B ) | 
						
							| 2 |  | thinchom.y |  |-  ( ph -> Y e. B ) | 
						
							| 3 |  | thinchom.f |  |-  ( ph -> F e. ( X H Y ) ) | 
						
							| 4 |  | thinchom.b |  |-  B = ( Base ` C ) | 
						
							| 5 |  | thinchom.h |  |-  H = ( Hom ` C ) | 
						
							| 6 |  | thinchom.c |  |-  ( ph -> C e. ThinCat ) | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ g e. ( X H Y ) ) -> X e. B ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ g e. ( X H Y ) ) -> Y e. B ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ g e. ( X H Y ) ) -> g e. ( X H Y ) ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ g e. ( X H Y ) ) -> F e. ( X H Y ) ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ph /\ g e. ( X H Y ) ) -> C e. ThinCat ) | 
						
							| 12 | 7 8 9 10 4 5 11 | thincmo2 |  |-  ( ( ph /\ g e. ( X H Y ) ) -> g = F ) | 
						
							| 13 | 12 3 | eqsnd |  |-  ( ph -> ( X H Y ) = { F } ) |