Metamath Proof Explorer


Theorem thincid

Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c
|- ( ph -> C e. ThinCat )
thincid.b
|- B = ( Base ` C )
thincid.h
|- H = ( Hom ` C )
thincid.x
|- ( ph -> X e. B )
thincid.i
|- .1. = ( Id ` C )
thincid.f
|- ( ph -> F e. ( X H X ) )
Assertion thincid
|- ( ph -> F = ( .1. ` X ) )

Proof

Step Hyp Ref Expression
1 thincid.c
 |-  ( ph -> C e. ThinCat )
2 thincid.b
 |-  B = ( Base ` C )
3 thincid.h
 |-  H = ( Hom ` C )
4 thincid.x
 |-  ( ph -> X e. B )
5 thincid.i
 |-  .1. = ( Id ` C )
6 thincid.f
 |-  ( ph -> F e. ( X H X ) )
7 1 thinccd
 |-  ( ph -> C e. Cat )
8 2 3 5 7 4 catidcl
 |-  ( ph -> ( .1. ` X ) e. ( X H X ) )
9 4 4 6 8 2 3 1 thincmo2
 |-  ( ph -> F = ( .1. ` X ) )