Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincid.c | |- ( ph -> C e. ThinCat ) |
|
| thincid.b | |- B = ( Base ` C ) |
||
| thincid.h | |- H = ( Hom ` C ) |
||
| thincid.x | |- ( ph -> X e. B ) |
||
| thincid.i | |- .1. = ( Id ` C ) |
||
| thincid.f | |- ( ph -> F e. ( X H X ) ) |
||
| Assertion | thincid | |- ( ph -> F = ( .1. ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincid.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincid.b | |- B = ( Base ` C ) |
|
| 3 | thincid.h | |- H = ( Hom ` C ) |
|
| 4 | thincid.x | |- ( ph -> X e. B ) |
|
| 5 | thincid.i | |- .1. = ( Id ` C ) |
|
| 6 | thincid.f | |- ( ph -> F e. ( X H X ) ) |
|
| 7 | 1 | thinccd | |- ( ph -> C e. Cat ) |
| 8 | 2 3 5 7 4 | catidcl | |- ( ph -> ( .1. ` X ) e. ( X H X ) ) |
| 9 | 4 4 6 8 2 3 1 | thincmo2 | |- ( ph -> F = ( .1. ` X ) ) |