Description: In a thin category, F is an inverse of G iff F is a section of G (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) | |
| thincsect.b | |- B = ( Base ` C ) | ||
| thincsect.x | |- ( ph -> X e. B ) | ||
| thincsect.y | |- ( ph -> Y e. B ) | ||
| thincsect.s | |- S = ( Sect ` C ) | ||
| thincinv.n | |- N = ( Inv ` C ) | ||
| Assertion | thincinv | |- ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | thincsect.c | |- ( ph -> C e. ThinCat ) | |
| 2 | thincsect.b | |- B = ( Base ` C ) | |
| 3 | thincsect.x | |- ( ph -> X e. B ) | |
| 4 | thincsect.y | |- ( ph -> Y e. B ) | |
| 5 | thincsect.s | |- S = ( Sect ` C ) | |
| 6 | thincinv.n | |- N = ( Inv ` C ) | |
| 7 | 1 | thinccd | |- ( ph -> C e. Cat ) | 
| 8 | 2 6 7 3 4 5 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) | 
| 9 | 1 2 3 4 5 | thincsect2 | |- ( ph -> ( F ( X S Y ) G <-> G ( Y S X ) F ) ) | 
| 10 | 9 | biimpa | |- ( ( ph /\ F ( X S Y ) G ) -> G ( Y S X ) F ) | 
| 11 | 8 10 | mpbiran3d | |- ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) ) |