Description: In a thin category, F is an inverse of G iff F is a section of G (Contributed by Zhi Wang, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
thincsect.b | |- B = ( Base ` C ) |
||
thincsect.x | |- ( ph -> X e. B ) |
||
thincsect.y | |- ( ph -> Y e. B ) |
||
thincsect.s | |- S = ( Sect ` C ) |
||
thincinv.n | |- N = ( Inv ` C ) |
||
Assertion | thincinv | |- ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
2 | thincsect.b | |- B = ( Base ` C ) |
|
3 | thincsect.x | |- ( ph -> X e. B ) |
|
4 | thincsect.y | |- ( ph -> Y e. B ) |
|
5 | thincsect.s | |- S = ( Sect ` C ) |
|
6 | thincinv.n | |- N = ( Inv ` C ) |
|
7 | 1 | thinccd | |- ( ph -> C e. Cat ) |
8 | 2 6 7 3 4 5 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
9 | 1 2 3 4 5 | thincsect2 | |- ( ph -> ( F ( X S Y ) G <-> G ( Y S X ) F ) ) |
10 | 9 | biimpa | |- ( ( ph /\ F ( X S Y ) G ) -> G ( Y S X ) F ) |
11 | 8 10 | mpbiran3d | |- ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) ) |