Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isthincd2lem1.1 | |- ( ph -> X e. B ) |
|
isthincd2lem1.2 | |- ( ph -> Y e. B ) |
||
isthincd2lem1.3 | |- ( ph -> F e. ( X H Y ) ) |
||
isthincd2lem1.4 | |- ( ph -> G e. ( X H Y ) ) |
||
thincmo2.b | |- B = ( Base ` C ) |
||
thincmo2.h | |- H = ( Hom ` C ) |
||
thincmo2.c | |- ( ph -> C e. ThinCat ) |
||
Assertion | thincmo2 | |- ( ph -> F = G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd2lem1.1 | |- ( ph -> X e. B ) |
|
2 | isthincd2lem1.2 | |- ( ph -> Y e. B ) |
|
3 | isthincd2lem1.3 | |- ( ph -> F e. ( X H Y ) ) |
|
4 | isthincd2lem1.4 | |- ( ph -> G e. ( X H Y ) ) |
|
5 | thincmo2.b | |- B = ( Base ` C ) |
|
6 | thincmo2.h | |- H = ( Hom ` C ) |
|
7 | thincmo2.c | |- ( ph -> C e. ThinCat ) |
|
8 | 5 6 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) |
9 | 8 | simprbi | |- ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
10 | 7 9 | syl | |- ( ph -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
11 | 1 2 3 4 10 | isthincd2lem1 | |- ( ph -> F = G ) |