Metamath Proof Explorer


Theorem thincmo2

Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1
|- ( ph -> X e. B )
isthincd2lem1.2
|- ( ph -> Y e. B )
isthincd2lem1.3
|- ( ph -> F e. ( X H Y ) )
isthincd2lem1.4
|- ( ph -> G e. ( X H Y ) )
thincmo2.b
|- B = ( Base ` C )
thincmo2.h
|- H = ( Hom ` C )
thincmo2.c
|- ( ph -> C e. ThinCat )
Assertion thincmo2
|- ( ph -> F = G )

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1
 |-  ( ph -> X e. B )
2 isthincd2lem1.2
 |-  ( ph -> Y e. B )
3 isthincd2lem1.3
 |-  ( ph -> F e. ( X H Y ) )
4 isthincd2lem1.4
 |-  ( ph -> G e. ( X H Y ) )
5 thincmo2.b
 |-  B = ( Base ` C )
6 thincmo2.h
 |-  H = ( Hom ` C )
7 thincmo2.c
 |-  ( ph -> C e. ThinCat )
8 5 6 isthinc
 |-  ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) )
9 8 simprbi
 |-  ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) )
10 7 9 syl
 |-  ( ph -> A. x e. B A. y e. B E* f f e. ( x H y ) )
11 1 2 3 4 10 isthincd2lem1
 |-  ( ph -> F = G )