| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincmo.c |
|- ( ph -> C e. ThinCat ) |
| 2 |
|
thincmo.x |
|- ( ph -> X e. B ) |
| 3 |
|
thincmo.y |
|- ( ph -> Y e. B ) |
| 4 |
|
thincn0eu.b |
|- ( ph -> B = ( Base ` C ) ) |
| 5 |
|
thincn0eu.h |
|- ( ph -> H = ( Hom ` C ) ) |
| 6 |
2 4
|
eleqtrd |
|- ( ph -> X e. ( Base ` C ) ) |
| 7 |
3 4
|
eleqtrd |
|- ( ph -> Y e. ( Base ` C ) ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 10 |
1 6 7 8 9
|
thincmo |
|- ( ph -> E* f f e. ( X ( Hom ` C ) Y ) ) |
| 11 |
5
|
oveqd |
|- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
| 12 |
11
|
eleq2d |
|- ( ph -> ( f e. ( X H Y ) <-> f e. ( X ( Hom ` C ) Y ) ) ) |
| 13 |
12
|
mobidv |
|- ( ph -> ( E* f f e. ( X H Y ) <-> E* f f e. ( X ( Hom ` C ) Y ) ) ) |
| 14 |
10 13
|
mpbird |
|- ( ph -> E* f f e. ( X H Y ) ) |