Step |
Hyp |
Ref |
Expression |
1 |
|
thincmo.c |
|- ( ph -> C e. ThinCat ) |
2 |
|
thincmo.x |
|- ( ph -> X e. B ) |
3 |
|
thincmo.y |
|- ( ph -> Y e. B ) |
4 |
|
thincn0eu.b |
|- ( ph -> B = ( Base ` C ) ) |
5 |
|
thincn0eu.h |
|- ( ph -> H = ( Hom ` C ) ) |
6 |
2 4
|
eleqtrd |
|- ( ph -> X e. ( Base ` C ) ) |
7 |
3 4
|
eleqtrd |
|- ( ph -> Y e. ( Base ` C ) ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
10 |
1 6 7 8 9
|
thincmo |
|- ( ph -> E* f f e. ( X ( Hom ` C ) Y ) ) |
11 |
5
|
oveqd |
|- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
12 |
11
|
eleq2d |
|- ( ph -> ( f e. ( X H Y ) <-> f e. ( X ( Hom ` C ) Y ) ) ) |
13 |
12
|
mobidv |
|- ( ph -> ( E* f f e. ( X H Y ) <-> E* f f e. ( X ( Hom ` C ) Y ) ) ) |
14 |
10 13
|
mpbird |
|- ( ph -> E* f f e. ( X H Y ) ) |