Step |
Hyp |
Ref |
Expression |
1 |
|
thincmo.c |
|- ( ph -> C e. ThinCat ) |
2 |
|
thincmo.x |
|- ( ph -> X e. B ) |
3 |
|
thincmo.y |
|- ( ph -> Y e. B ) |
4 |
|
thincn0eu.b |
|- ( ph -> B = ( Base ` C ) ) |
5 |
|
thincn0eu.h |
|- ( ph -> H = ( Hom ` C ) ) |
6 |
|
n0 |
|- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
7 |
6
|
biimpi |
|- ( ( X H Y ) =/= (/) -> E. f f e. ( X H Y ) ) |
8 |
1 2 3 4 5
|
thincmod |
|- ( ph -> E* f f e. ( X H Y ) ) |
9 |
7 8
|
anim12i |
|- ( ( ( X H Y ) =/= (/) /\ ph ) -> ( E. f f e. ( X H Y ) /\ E* f f e. ( X H Y ) ) ) |
10 |
|
df-eu |
|- ( E! f f e. ( X H Y ) <-> ( E. f f e. ( X H Y ) /\ E* f f e. ( X H Y ) ) ) |
11 |
9 10
|
sylibr |
|- ( ( ( X H Y ) =/= (/) /\ ph ) -> E! f f e. ( X H Y ) ) |
12 |
11
|
expcom |
|- ( ph -> ( ( X H Y ) =/= (/) -> E! f f e. ( X H Y ) ) ) |
13 |
|
euex |
|- ( E! f f e. ( X H Y ) -> E. f f e. ( X H Y ) ) |
14 |
13 6
|
sylibr |
|- ( E! f f e. ( X H Y ) -> ( X H Y ) =/= (/) ) |
15 |
12 14
|
impbid1 |
|- ( ph -> ( ( X H Y ) =/= (/) <-> E! f f e. ( X H Y ) ) ) |