Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
|- K = ( toHL ` W ) |
2 |
|
thlbas.c |
|- C = ( ClSubSp ` W ) |
3 |
2
|
fvexi |
|- C e. _V |
4 |
|
eqid |
|- ( toInc ` C ) = ( toInc ` C ) |
5 |
4
|
ipobas |
|- ( C e. _V -> C = ( Base ` ( toInc ` C ) ) ) |
6 |
3 5
|
ax-mp |
|- C = ( Base ` ( toInc ` C ) ) |
7 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
8 |
|
basendxnocndx |
|- ( Base ` ndx ) =/= ( oc ` ndx ) |
9 |
7 8
|
setsnid |
|- ( Base ` ( toInc ` C ) ) = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
10 |
6 9
|
eqtri |
|- C = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
11 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
12 |
1 2 4 11
|
thlval |
|- ( W e. _V -> K = ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
13 |
12
|
fveq2d |
|- ( W e. _V -> ( Base ` K ) = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) ) |
14 |
10 13
|
eqtr4id |
|- ( W e. _V -> C = ( Base ` K ) ) |
15 |
|
base0 |
|- (/) = ( Base ` (/) ) |
16 |
|
fvprc |
|- ( -. W e. _V -> ( ClSubSp ` W ) = (/) ) |
17 |
2 16
|
eqtrid |
|- ( -. W e. _V -> C = (/) ) |
18 |
|
fvprc |
|- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
19 |
1 18
|
eqtrid |
|- ( -. W e. _V -> K = (/) ) |
20 |
19
|
fveq2d |
|- ( -. W e. _V -> ( Base ` K ) = ( Base ` (/) ) ) |
21 |
15 17 20
|
3eqtr4a |
|- ( -. W e. _V -> C = ( Base ` K ) ) |
22 |
14 21
|
pm2.61i |
|- C = ( Base ` K ) |