Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
|- K = ( toHL ` W ) |
2 |
|
thlbas.c |
|- C = ( ClSubSp ` W ) |
3 |
|
thlle.i |
|- I = ( toInc ` C ) |
4 |
|
thlle.l |
|- .<_ = ( le ` I ) |
5 |
|
pleid |
|- le = Slot ( le ` ndx ) |
6 |
|
plendxnocndx |
|- ( le ` ndx ) =/= ( oc ` ndx ) |
7 |
5 6
|
setsnid |
|- ( le ` I ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
8 |
4 7
|
eqtri |
|- .<_ = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
9 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
10 |
1 2 3 9
|
thlval |
|- ( W e. _V -> K = ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
11 |
10
|
fveq2d |
|- ( W e. _V -> ( le ` K ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) ) |
12 |
8 11
|
eqtr4id |
|- ( W e. _V -> .<_ = ( le ` K ) ) |
13 |
5
|
str0 |
|- (/) = ( le ` (/) ) |
14 |
2
|
fvexi |
|- C e. _V |
15 |
3
|
ipolerval |
|- ( C e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) ) |
16 |
14 15
|
ax-mp |
|- { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) |
17 |
4 16
|
eqtr4i |
|- .<_ = { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } |
18 |
|
opabn0 |
|- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) <-> E. x E. y ( { x , y } C_ C /\ x C_ y ) ) |
19 |
|
vex |
|- x e. _V |
20 |
|
vex |
|- y e. _V |
21 |
19 20
|
prss |
|- ( ( x e. C /\ y e. C ) <-> { x , y } C_ C ) |
22 |
|
elfvex |
|- ( x e. ( ClSubSp ` W ) -> W e. _V ) |
23 |
22 2
|
eleq2s |
|- ( x e. C -> W e. _V ) |
24 |
23
|
ad2antrr |
|- ( ( ( x e. C /\ y e. C ) /\ x C_ y ) -> W e. _V ) |
25 |
21 24
|
sylanbr |
|- ( ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
26 |
25
|
exlimivv |
|- ( E. x E. y ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
27 |
18 26
|
sylbi |
|- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) -> W e. _V ) |
28 |
27
|
necon1bi |
|- ( -. W e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = (/) ) |
29 |
17 28
|
eqtrid |
|- ( -. W e. _V -> .<_ = (/) ) |
30 |
|
fvprc |
|- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
31 |
1 30
|
eqtrid |
|- ( -. W e. _V -> K = (/) ) |
32 |
31
|
fveq2d |
|- ( -. W e. _V -> ( le ` K ) = ( le ` (/) ) ) |
33 |
13 29 32
|
3eqtr4a |
|- ( -. W e. _V -> .<_ = ( le ` K ) ) |
34 |
12 33
|
pm2.61i |
|- .<_ = ( le ` K ) |