Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
|- K = ( toHL ` W ) |
2 |
|
thlbas.c |
|- C = ( ClSubSp ` W ) |
3 |
|
thlle.i |
|- I = ( toInc ` C ) |
4 |
|
thlle.l |
|- .<_ = ( le ` I ) |
5 |
|
pleid |
|- le = Slot ( le ` ndx ) |
6 |
|
10re |
|- ; 1 0 e. RR |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
|
0nn0 |
|- 0 e. NN0 |
9 |
|
1nn |
|- 1 e. NN |
10 |
|
0lt1 |
|- 0 < 1 |
11 |
7 8 9 10
|
declt |
|- ; 1 0 < ; 1 1 |
12 |
6 11
|
ltneii |
|- ; 1 0 =/= ; 1 1 |
13 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
14 |
|
ocndx |
|- ( oc ` ndx ) = ; 1 1 |
15 |
13 14
|
neeq12i |
|- ( ( le ` ndx ) =/= ( oc ` ndx ) <-> ; 1 0 =/= ; 1 1 ) |
16 |
12 15
|
mpbir |
|- ( le ` ndx ) =/= ( oc ` ndx ) |
17 |
5 16
|
setsnid |
|- ( le ` I ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
18 |
4 17
|
eqtri |
|- .<_ = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
19 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
20 |
1 2 3 19
|
thlval |
|- ( W e. _V -> K = ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
21 |
20
|
fveq2d |
|- ( W e. _V -> ( le ` K ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) ) |
22 |
18 21
|
eqtr4id |
|- ( W e. _V -> .<_ = ( le ` K ) ) |
23 |
5
|
str0 |
|- (/) = ( le ` (/) ) |
24 |
2
|
fvexi |
|- C e. _V |
25 |
3
|
ipolerval |
|- ( C e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) ) |
26 |
24 25
|
ax-mp |
|- { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) |
27 |
4 26
|
eqtr4i |
|- .<_ = { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } |
28 |
|
opabn0 |
|- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) <-> E. x E. y ( { x , y } C_ C /\ x C_ y ) ) |
29 |
|
vex |
|- x e. _V |
30 |
|
vex |
|- y e. _V |
31 |
29 30
|
prss |
|- ( ( x e. C /\ y e. C ) <-> { x , y } C_ C ) |
32 |
|
elfvex |
|- ( x e. ( ClSubSp ` W ) -> W e. _V ) |
33 |
32 2
|
eleq2s |
|- ( x e. C -> W e. _V ) |
34 |
33
|
ad2antrr |
|- ( ( ( x e. C /\ y e. C ) /\ x C_ y ) -> W e. _V ) |
35 |
31 34
|
sylanbr |
|- ( ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
36 |
35
|
exlimivv |
|- ( E. x E. y ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
37 |
28 36
|
sylbi |
|- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) -> W e. _V ) |
38 |
37
|
necon1bi |
|- ( -. W e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = (/) ) |
39 |
27 38
|
eqtrid |
|- ( -. W e. _V -> .<_ = (/) ) |
40 |
|
fvprc |
|- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
41 |
1 40
|
eqtrid |
|- ( -. W e. _V -> K = (/) ) |
42 |
41
|
fveq2d |
|- ( -. W e. _V -> ( le ` K ) = ( le ` (/) ) ) |
43 |
23 39 42
|
3eqtr4a |
|- ( -. W e. _V -> .<_ = ( le ` K ) ) |
44 |
22 43
|
pm2.61i |
|- .<_ = ( le ` K ) |