Metamath Proof Explorer


Theorem thlleval

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k
|- K = ( toHL ` W )
thlbas.c
|- C = ( ClSubSp ` W )
thlleval.l
|- .<_ = ( le ` K )
Assertion thlleval
|- ( ( S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) )

Proof

Step Hyp Ref Expression
1 thlval.k
 |-  K = ( toHL ` W )
2 thlbas.c
 |-  C = ( ClSubSp ` W )
3 thlleval.l
 |-  .<_ = ( le ` K )
4 2 fvexi
 |-  C e. _V
5 eqid
 |-  ( toInc ` C ) = ( toInc ` C )
6 eqid
 |-  ( le ` ( toInc ` C ) ) = ( le ` ( toInc ` C ) )
7 1 2 5 6 thlle
 |-  ( le ` ( toInc ` C ) ) = ( le ` K )
8 3 7 eqtr4i
 |-  .<_ = ( le ` ( toInc ` C ) )
9 5 8 ipole
 |-  ( ( C e. _V /\ S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) )
10 4 9 mp3an1
 |-  ( ( S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) )