Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | thlval.k | |- K = ( toHL ` W ) |
|
thlbas.c | |- C = ( ClSubSp ` W ) |
||
thlleval.l | |- .<_ = ( le ` K ) |
||
Assertion | thlleval | |- ( ( S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlval.k | |- K = ( toHL ` W ) |
|
2 | thlbas.c | |- C = ( ClSubSp ` W ) |
|
3 | thlleval.l | |- .<_ = ( le ` K ) |
|
4 | 2 | fvexi | |- C e. _V |
5 | eqid | |- ( toInc ` C ) = ( toInc ` C ) |
|
6 | eqid | |- ( le ` ( toInc ` C ) ) = ( le ` ( toInc ` C ) ) |
|
7 | 1 2 5 6 | thlle | |- ( le ` ( toInc ` C ) ) = ( le ` K ) |
8 | 3 7 | eqtr4i | |- .<_ = ( le ` ( toInc ` C ) ) |
9 | 5 8 | ipole | |- ( ( C e. _V /\ S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) ) |
10 | 4 9 | mp3an1 | |- ( ( S e. C /\ T e. C ) -> ( S .<_ T <-> S C_ T ) ) |